【題目】如圖,長方體ABCD﹣A1B1C1D1中,點M在棱BB1上,兩條直線MA,MC與平面ABCD所成角均為θ,AC與BD交于點O.
(1)求證:AC⊥OM;
(2)當M為BB1的中點,且θ= 時,求二面角A﹣D1M﹣B1的余弦值.
【答案】
(1)證明:∵MB⊥面ABCD,直線MA,MC與平面ABCD所成角均為θ,∴∠MAB=∠MCB=θ.
故△MBA≌MBC,BA=BC.
∴四邊形ABCD為正方形,AC⊥DB,又AC⊥MB,DB∩MB=B
∴AC⊥面BDM,即AC⊥OM
(2)解:θ= 時,則有AB=BC=MB,延長D1M,DB交于點點H,
過點O作ON⊥D1H于點N,連接AN,則∠ANO為二面角A﹣D1M﹣B的平面角.
設AB=1,由△D1DH∽△ONH易得ON= ,AO= ,
tan∠ANO= ,∴∠ANO=30°
二面角A﹣D1M﹣B1的余弦值為 .
【解析】(Ⅰ)由 MC與平面ABCD所成角均為θ,得∠MAB=∠MCB=θ.BA=BC.四邊形ABCD為正方形,即可得AC⊥面BDM,即AC⊥OM.(Ⅱ) θ= 時,則有AB=BC=MB,延長D1M,DB交于點點H,過點O作ON⊥D1H于點N,連接AN,則∠ANO為二面角A﹣D1M﹣B的平面角,利用平面幾何知識即可求解.
【考點精析】解答此題的關鍵在于理解直線與平面垂直的性質的相關知識,掌握垂直于同一個平面的兩條直線平行.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的4個圖像中,與所給3個事件最吻合的順序為
①我離開家后,心情愉快,緩慢行進,但最后發(fā)現(xiàn)快遲到時,加速前進;
②我騎著自行車上學,但中途車壞了,我修理好又以原來的速度前進;
③我快速的騎著自行車,最后發(fā)現(xiàn)時間充足,又減緩了速度.
① ② ③ ④
A. ③①② B. ③④② C. ②①③ D. ②④③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】總體由編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第9列和第10列數(shù)字開始從左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為_______
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓的半徑為2,點是圓的六等分點中的五個點.
(1)從中隨機取三點構成三角形,求這三點構成的三角形是直角三角形的概率;
(2)在圓上隨機取一點,求的面積大于的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調遞減區(qū)間;
(2)若,求函數(shù)在區(qū)間上的最大值;
(3)若在區(qū)間上恒成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com