(x-
1
x
6的二項(xiàng)展開式中的常數(shù)項(xiàng)為
 
.(用數(shù)字作答)
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:
分析:在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答: 解:(x-
1
x
6的二項(xiàng)展開式的通項(xiàng)公式為Tr+1=
C
r
6
•(-1)r•x6-2r,
令6-2r=0,求得r=3,可得(x-
1
x
6的二項(xiàng)展開式中的常數(shù)項(xiàng)為
C
3
6
=20,
故答案為:-20.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量x服從正態(tài)分布N(1,4),若P(x>a+1)=P(x<2a-5),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
x+y≤2
x≥0
y≥m
表示的平面區(qū)域的面積為2,則
x+y+2
x+1
的最小值為(  )
A、
3
2
B、
4
3
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為1,數(shù)列{bn}為等比數(shù)列,且bn=
an+1
an
,若b1b20=2,則a21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β為鈍角,若sin(α+β)=2sin(α-β),則tan(α-β)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-mx+1的圖象為曲線C,若曲線C不存在與直線y=
1
2
x垂直的切線,則實(shí)數(shù)m的取值范圍是(  )
A、m>2
B、m>-
1
2
C、m≤2
D、m≤-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若非空集合A中的元素具有命題α的性質(zhì),集合B中的元素具有命題β的性質(zhì),若A?B,則命題α是命題β的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若G是△ABC的重心,a,b,c分別是角A,B,C的對(duì)邊,若a
GA
+b
GB
+
3
3
c
GC
=
0
,則角A=( 。
A、90°B、60°
C、30°D、45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A、y=-x2+2
B、y=
1
x
C、y=2-x
D、y=lnx

查看答案和解析>>

同步練習(xí)冊(cè)答案