已知點(diǎn)A(4,0)、B(0,4)、C(
(1)若,且,求的大。
(2),求的值.

(I) ;(II).

解析試題分析:(1)利用向量的坐標(biāo)運(yùn)算和同角三角函數(shù)關(guān)系,求得的三角函數(shù)值,繼而求出的大小; (II)利用兩向量垂直的坐標(biāo)運(yùn)算法則,可求得,利用倍角公式和同角三角函數(shù)關(guān)系化簡(jiǎn)所求的式子,求出原式值為.
試題解析:(1)由題意可得,又,兩邊平方得, 又 ,;
(II),,整理得,平方得,化簡(jiǎn)所求式:.
考點(diǎn):1.向量的坐標(biāo)運(yùn)算, 2.同角三角函數(shù)關(guān)系, 3.二倍角公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若,求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若存在,使f(x0)=1,求x0的值;
(2)設(shè)條件p:,條件q:,若p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,函數(shù)·,且最小正周期為
(1)求的值;
(2)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,其中
(1)求函數(shù)的最小正周期,并從下列的變換中選擇一組合適變換的序號(hào),經(jīng)過(guò)這組變換的排序,可以把函數(shù)的圖像變成的圖像;(要求變換的先后順序)
①縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍,
②縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,
③橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,
④橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,
⑤向上平移一個(gè)單位,
⑥向下平移一個(gè)單位,
⑦向左平移個(gè)單位,
⑧向右平移個(gè)單位,
⑨向左平移個(gè)單位,
⑩向右平移個(gè)單位,
(2)在中角對(duì)應(yīng)邊分別為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),的最大值是1,最小正周期是,其圖像經(jīng)過(guò)點(diǎn)
(1)求的解析式;
(2)設(shè)、、為△ABC的三個(gè)內(nèi)角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是半徑為2,圓心角為的扇形,是扇形的內(nèi)接矩形.
(Ⅰ)當(dāng)時(shí),求的長(zhǎng);
(Ⅱ)求矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角坐標(biāo)系中,角的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合,終邊交單位圓于點(diǎn),且.將角的終邊按逆時(shí)針?lè)较蛐D(zhuǎn),交單位圓于點(diǎn).記

(Ⅰ)若,求
(Ⅱ)分別過(guò)軸的垂線,垂足依次為.記△ 的面積為,△的面積為.若,求角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 
(Ⅰ)若求函數(shù)的值;
(Ⅱ)求函數(shù)的值域。

查看答案和解析>>

同步練習(xí)冊(cè)答案