數(shù)列
的前
項和為
,
,
,等差數(shù)列
滿足
.
(1)分別求數(shù)列
,
的通項公式;
(2)設
,求證
.
試題分析:(1)由
-① 得
-②,
①
②得
,
2分
; 3分
4分
6分
(2)因為
8分
所以
9分
所以
10分
11分
所以
12分
點評:數(shù)列的通項公式及應用是數(shù)列的重點內容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學生的理性思維,這是近幾年新課標高考對數(shù)列考查的一個亮點,也是一種趨勢.隨著新課標實施的深入,高考關注的重點為等差、等比數(shù)列的通項公式,錯位相減法、裂項相消法等求數(shù)列的前n項的和等等
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
一等差數(shù)列的前
n項和為210,其中前4項的和為40,后4項的和為80,則
n的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列
滿足
。
(Ⅰ)若
是等差數(shù)列,求其通項公式;
(Ⅱ)若
滿足
,
為
的前
項和,求
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在各項均不為零的等差數(shù)列
中,若a
- a
+ a
=0(n≥2),則S
-4n=( )
A -2 B 0 C 1 D 2
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(1)已知等差數(shù)列
,
(
),求證:
仍為等差數(shù)列;
(2)已知等比數(shù)列
),類比上述性質,寫出一個真命題并加以證明.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列
的前
項和記為
(Ⅰ)求
的通項公式;
(Ⅱ)等差數(shù)列
的各項為正,其前
項和為
,且
,又
成等比數(shù)列,求
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知等差數(shù)列
滿足:
.
的前
項和為
。(Ⅰ)求
及
;
(Ⅱ)令
,求數(shù)列
的前
項和
并證明
.
查看答案和解析>>