【題目】某輛汽車以千米小時(shí)的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求時(shí),每小時(shí)的油耗(所需要的汽油量)為升,其中為常數(shù),且

1)若汽車以120千米小時(shí)的速度行駛時(shí),每小時(shí)的油耗為11.5升,欲使每小時(shí)的油耗不超過9升,求的取值范圍;

2)求該汽車行駛100千米的油耗的最小值.

【答案】1,;(2)當(dāng),該汽車行駛100千米的油耗的最小值為升;

當(dāng),該汽車行駛100千米的油耗的最小值為升.

【解析】

1)將代入每小時(shí)的油耗,解方程可得,由題意可得,解不等式可得的范圍;

2)設(shè)該汽車行駛100千米油耗為升,由題意可得,換元令、化簡整理可得的二次函數(shù),討論的范圍和對稱軸的關(guān)系,即可得到所求最小值.

解:(1)由題意可得當(dāng)時(shí),,

解得,由,

,解得,

,可得,

每小時(shí)的油耗不超過9升,的取值范圍為;

2)設(shè)該汽車行駛100千米油耗為升,則

,

,則,

即有,

對稱軸為,由,可得,

①若,

則當(dāng),即時(shí),;

②若

則當(dāng),即時(shí),

答:當(dāng),該汽車行駛100千米的油耗的最小值為升;

當(dāng),該汽車行駛100千米的油耗的最小值為升.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的外接圓⊙O的半徑為5,CE垂直于⊙O所在的平面,BD∥CECE4,BC6,且BD1,.

1)求證:平面AEC⊥平面BCED;

2)試問線段DE上是否存在點(diǎn)M,使得直線AM與平面ACE所成角的正弦值為?若存在,確定點(diǎn)M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)a為實(shí)常數(shù)).

1)若,作函數(shù)的圖象并寫出單調(diào)減區(qū)間;

2)當(dāng)時(shí),設(shè)在區(qū)間上的最小值為,求的表達(dá)式;

3)當(dāng)時(shí)對于函數(shù)和函數(shù),若對任意的,總存在使成立,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)的圓的圓心Cx軸上,且與過原點(diǎn)傾斜角為30°的直線l相切.

(1)求圓C的標(biāo)準(zhǔn)方程;

(2)求直線被圓C截得的弦長;

(3)點(diǎn)P在直線m上,過點(diǎn)P作⊙C的切線PM、PN,切點(diǎn)分別為MN,求經(jīng)過P、M、N、C四點(diǎn)的圓所過的定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是素?cái)?shù),證明存在0,1,2,…,的一個排列(,,…,),使得,,…,.被除的余數(shù)各不相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)擬在空地上建一個占地面積為2400平方米的矩形休閑廣場,按照設(shè)計(jì)要求,休閑廣場中間有兩個完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設(shè)計(jì)矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),若,求的取值范圍;

2)若定義在上的奇函數(shù)滿足,且當(dāng),求上的解析式;

3)對于(2)中的,若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象相鄰兩條對稱軸之間的距離為,將函數(shù)的圖象向左平移個單位,得到的圖象關(guān)于軸對稱,則( )

A. 函數(shù)的周期為 B. 函數(shù)圖象關(guān)于點(diǎn)對稱

C. 函數(shù)圖象關(guān)于直線對稱 D. 函數(shù)上單調(diào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ax2+bx+ca0),且f1

1)求證:函數(shù)fx)有兩個不同的零點(diǎn);

2)設(shè)x1,x2是函數(shù)fx)的兩個不同的零點(diǎn),求|x1x2|的取值范圍;

3)求證:函數(shù)fx)在區(qū)間(02)內(nèi)至少有一個零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案