橢圓+=1的離心率為(  )
A.B.C.D.
D
由橢圓方程+=1可知a2=16,b2=8,
∴c2=a2-b2=8,
∴e=====.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓E:+=1(a>b>0),以拋物線y2=8x的焦點為頂點,且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點,O為坐標原點,直線l:y=kx+m與橢圓E相交于A、B兩點,與直線x=-4相交于Q點,P是橢圓E上一點且滿足=+,證明·為定值,并求出該值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,有橢圓=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑的圓.過點作圓的兩切線互相垂直,則離心率e=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)橢圓+y2=1的左焦點為F,P為橢圓上一點,其橫坐標為,則|PF|等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1(-1,0),F2(1,0)是橢圓C的兩個焦點,過F2且垂直于x軸的直線交C于A、B兩點,且=3,則C的方程為(  )
(A) +y2=1      (B) +=1
(C) +=1     (D) +=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓右焦點且斜率為1的直線被橢圓截得的弦MN的長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1,F2,且兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(  )
A.(0,+∞)B.(,+∞)
C.(,+∞)D.(,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓=1上一點M作圓x2+y2=2的兩條切線,點A,B為切點.過A,B的直線l與x軸、y軸分別交于P,Q兩點,則△POQ的面積的最小值為(  )
A.B.C.1D.

查看答案和解析>>

同步練習冊答案