【題目】銳角△ABC中,其內(nèi)角A、B滿足:2cosA=sinB﹣ cosB.
(1)求角C的大;
(2)D為AB的中點,CD=1,求△ABC面積的最大值.

【答案】
(1)解:∵2cosA+ cosB=sinB,可得:cosA= sinB﹣ cosB=cos( ﹣B),

又∵A,B為銳角,

∴0 ﹣B< ,

∴A= ﹣B,A+B= ,可得:C=π﹣ =


(2)解:設(shè)∠ACD=α,延長CD到E,使CD=DE,

則AEBC為平行四邊形,

在△ACE中,AC=b,AE=BC=α,CE=2,∠CAE= ,∠AEC= ﹣α,

由正弦定理可得: = = ,

所以,a=4sinα,b=4sin( ﹣α),

SABC= absin∠ABC= sin

=4sinαsin( ﹣α)=2sinαcosα﹣2 sin2α

=sin2α+ cos2α﹣ =2sin(2α+ )﹣

當(dāng)α= 時,△ABC的面積取得最大值,最大值為2﹣


【解析】(1)由已知利用特殊角的三角函數(shù)值,兩角差的正弦函數(shù)公式可得cosA=cos( ﹣B),結(jié)合A,B為銳角,利用三角形內(nèi)角和定理可求C的值.(2)設(shè)∠ACD=α,延長CD到E,使CD=DE,則AEBC為平行四邊形,在△ACE中,由正弦定理可得a=4sinα,b=4sin( ﹣α),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用化簡可得SABC=2sin(2α+ )﹣ ,利用正弦函數(shù)的性質(zhì)可求△ABC面積的最大值.
【考點精析】本題主要考查了正弦定理的定義的相關(guān)知識點,需要掌握正弦定理:才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對任意實數(shù)x,f(x)<0恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a>0時,解關(guān)于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}滿足a1=1,an+an+1=( n(n∈N*),Sn=a1+4a2+42a3+…+4n1an , 則5Sn﹣4nan=(
A.n﹣1
B.n
C.2n
D.n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD,AB=AD= CD=2,點M是EC中點. (Ⅰ)求證:BM∥平面ADEF;
(Ⅱ)求三棱錐M﹣BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道問題:“今有垣高九尺,瓜生其上,蔓日長七寸;瓠生其下,蔓日長一尺,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出的結(jié)果n=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,在直角梯形ABCD中, ,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣3x+1,x∈[﹣2,2]的最大值為M,最小值為m,則M+m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣2|+2x﹣3,記f(x)≤﹣1的解集為M.
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M時,證明:x[f(x)]2﹣x2f(x)≤0.

查看答案和解析>>

同步練習(xí)冊答案