對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).定義:(1)f(x)的導(dǎo)數(shù)f′(x)(也叫f(x)一階導(dǎo)數(shù))的導(dǎo)數(shù),f″(x)為f(x)的二階導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0) )為函數(shù)y=f(x)的“拐點(diǎn)”;定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱(chēng).
(1)己知f(x)=x3-3x2+2x+2,求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo);
(2)檢驗(yàn)(1)中的函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱(chēng);
(3)對(duì)于任意的三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)寫(xiě)出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明).