精英家教網 > 高中數學 > 題目詳情
已知點A(2,1),拋物線y2=4x的焦點是F,若拋物線上存在一點P,使得|PA|+|PF|最小,則P點的坐標為(  )
A.(2,1)B.(1,1)C.D.
D
拋物線的焦點為F(1,0),準線方程為x=-1,過點P作準線的垂線交準線于B,則|PF|=|PB|,所以|PA|+|PF|=|PA|+|PB|,所以當A,P,B三點共線時,|PA|+|PF|最小,此時yP=yA=1,所以xP,即P點的坐標為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知動圓過定點(1,0),且與直線相切.
(1)求動圓圓心的軌跡方程;
(2)設是軌跡上異于原點的兩個不同點,直線的傾斜角分別為,①當時,求證直線恒過一定點;
②若為定值,直線是否仍恒過一定點,若存在,試求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定點和定直線,動點與定點的距離等于點到定直線的距離,記動點的軌跡為曲線.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線交于、不同兩點,且線段是此圓的直徑時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,設P是拋物線C1:x2=y上的動點,過點P作圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3于A、B兩點.

(1)求圓C2的圓心M到拋物線C1準線的距離;
(2)是否存在點P,使線段AB被拋物線C1在點P處的切線平分?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.

(1)求實數b的值.
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線yx2上的點到直線xy+1=0的最短距離為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

頂點在原點,準線與軸垂直,且經過點的拋物線方程是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過拋物線y2=2px焦點F作直線l交拋物線于A,B兩點,O為坐標原點,則△ABO為(  ).
A.銳角三角形B.直角三角形
C.不確定D.鈍角三角形

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

為拋物線的焦點,為該拋物線上三點,若,則的值為  (  )
A.B.C.D.12

查看答案和解析>>

同步練習冊答案