2.已知不等式ax2+bx+2>0的解集是{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},則2x2+bx+a<0的解為( 。
A.-3<x<2B.-2<x<3C.-5<x<1D.-1<x<5

分析 由不等式ax2+bx+2>0的解集求出對(duì)應(yīng)方程的實(shí)數(shù)根,
利用根與系數(shù)的關(guān)系求出a、b的值,再代入不等式2x2+bx+a<0,求出它的解集來(lái).

解答 解:不等式ax2+bx+2>0的解集是{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},
所以對(duì)應(yīng)方程ax2+bx+2=0的實(shí)數(shù)根為-$\frac{1}{2}$和$\frac{1}{3}$,且a<0;
由根與系數(shù)的關(guān)系得$\left\{\begin{array}{l}{-\frac{1}{2}+\frac{1}{3}=-\frac{a}}\\{-\frac{1}{2}×\frac{1}{3}=\frac{2}{a}}\end{array}\right.$,
解得a=-12,b=-2;
所以不等式2x2+bx+a<0可化為2x2-2x-12<0,
即x2-x-6<0,
解得-2<x<3.
故選:B.

點(diǎn)評(píng) 本題考查了一元二次不等式與對(duì)應(yīng)方程的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)⊙C1:(x-5)2+(y-3)2=9,⊙C2:x2+y2-4x+2y-9=0,則它們公切線(xiàn)的條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,∠BCA=90°,BC=CA=2,若該棱柱的所有頂點(diǎn)都在體積為$\frac{32π}{3}$的球面上,則直線(xiàn)B1C與直線(xiàn)AC1所成角的余弦值為( 。
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.$-\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an-4}是公比為-$\frac{1}{2}$的等比數(shù)列,設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且a1=5,若對(duì)任意n∈N*,都有P(Sn-4n)∈[1,3],則實(shí)數(shù)P的取值范圍是[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知2a=m,3a=n,則72a等于( 。
A.m3n2B.mn2C.m4nD.m2n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={x|y=$\sqrt{3-x}$},集合B={x|x≥1},則A∩B=( 。
A.[0,3]B.[1,3]C.[1,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=2sin(π-x)cosx+cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期.
(Ⅱ)若x∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=(x-1)(x-2)(x-3)(x-4)不求導(dǎo)數(shù),判斷f′(x)=0有幾個(gè)實(shí)根,并指出這些根所在的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)$y=\frac{1}{2x-1}+\sqrt{x+1}+\root{3}{3x-1}$的定義域?yàn)?\left\{{x|x≥-1且x≠\frac{1}{2}}\right\}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案