【題目】已知函數(shù),不等式恒成立.

(1)求函數(shù)的極值和函數(shù)的圖象在點處的切線方程;

(2)求實數(shù)的取值的集合

(3)設,函數(shù),,其中為自然對數(shù)的底數(shù),若關(guān)于的不等式至少有一個解,求的取值范圍.

【答案】(1)極大值為,無極小值; ;(2) ;(3).

【解析】

(1)求導,然后利用導數(shù)大于零和導數(shù)小于零,求得函數(shù)的單調(diào)區(qū)間,由此求得函數(shù)的極值.通過求出切點和斜率,利用點斜式求得切線方程.(2)時不合題意.時,對兩邊取以為底的對數(shù),轉(zhuǎn)化為恒成立.根據(jù)(1)中函數(shù)的單調(diào)性以及極大值,可求得的值.(3)將關(guān)于的不等式左邊構(gòu)造為函數(shù),對分成兩類,分別利用函數(shù)的值域,和函數(shù)的導數(shù),求解出的取值范圍.

(1),則時,時,遞增,在遞減,故; ,故函數(shù)的圖象在點處的切線方程為:

(2)顯然,不合題意。當時,由,則有,故依題意知恒成立.由前面的結(jié)論知,當時,取得最大值,故.又可知,當時,取得最大值,故 .,綜上得 .

(3)設.時,,所以不存在 使得成立.故不合題意.當時,.因為, 所以恒成立,故單調(diào)遞減,,則依題意有.解之得的取值范圍

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】己知動點M與到點N(3,0)的距離比動點M到直線x=-2的距離大1,記動圓M的軌跡為曲線C.

(1)求曲線C的方程;

(2)若直線l與曲線C相交于AB:兩點,且(O為坐標原點),證明直線l經(jīng)過定點H,并求出H點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)若是函數(shù)的一個極值點,求實數(shù)的值.

)設,當時,函數(shù)的圖象恒不在直線的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,的中點.

1)證明:∥平面.

2)設二面角,,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在一個周期內(nèi)的圖象如下圖所示.

1)求函數(shù)的解析式;

2)設,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺還可以用的機器由于使用的時間較長,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉(zhuǎn)的速率而變化,下表為抽樣試驗結(jié)果

轉(zhuǎn)速x轉(zhuǎn)/

16

14

12

8

每小時生產(chǎn)有缺陷的零件數(shù)y(件)

11

9

8

5

(1)畫出散點圖

(2)如果yx有線性相關(guān)的關(guān)系,求回歸直線方程;

(3)若實際生產(chǎn)中允許每小時生產(chǎn)的產(chǎn)品中有缺陷的零件最多為10,那么機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以,為焦點的橢圓。

(1)求曲線C的方程;

(2)設曲線C與曲線E相交于第一象限點P,且,求曲線E的標準方程;

(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從四所高校中選2所.

(1)求甲、乙、丙三名同學都選高校的概率;

(2)若甲必選,記為甲、乙、丙三名同學中選校的人數(shù),求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直三棱柱中,,平面,DAC的中點.

1)求證:平面;

2)求證:平面

3)設E上一點,試確定E的位置使平面平面BDE,并說明理由.

查看答案和解析>>

同步練習冊答案