已知命題,命題若命“”是真命題,則實(shí)數(shù)的取值范圍為       .

 

【答案】

【解析】

試題分析:∵命“”是真命題,∴命題p和q都是真命題,當(dāng)命題p為真命題時(shí),上恒成立,∴;當(dāng)命題q為真命題時(shí),,故,解得

考點(diǎn):本題考查了真值表的運(yùn)用

點(diǎn)評(píng):熟練運(yùn)用真值表及一元二次函數(shù)的恒成立問(wèn)題等是解決此類(lèi)問(wèn)題的關(guān)鍵

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出命題:已知a、b為實(shí)數(shù),若a+b=1,則ab≤
1
4
.在它的逆命題、否命題、逆否命三個(gè)命題中,真命題的個(gè)數(shù)是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題:“若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m≠n,m,n∈N+),則am+n=
ma-nbm-n
”.現(xiàn)已知數(shù)列{bn}(bn>0,n∈N+)為等比數(shù)列,且bm=a,bn=b(m≠n,m,n∈N+).
(1)請(qǐng)給出已知命的證明;
(2)類(lèi)比(1)的方法與結(jié)論,推導(dǎo)出bm+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題:“若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m≠n,m,n∈N+),則am+n=
ma-nb
m-n
”.現(xiàn)已知數(shù)列{bn}(bn>0,n∈N+)為等比數(shù)列,且bm=a,bn=b(m≠n,m,n∈N+).
(1)請(qǐng)給出已知命的證明;
(2)類(lèi)比(1)的方法與結(jié)論,推導(dǎo)出bm+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 推理與證明》2010年單元測(cè)試卷(解析版) 題型:解答題

已知命題:“若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m≠n,m,n∈N+),則”.現(xiàn)已知數(shù)列{bn}(bn>0,n∈N+)為等比數(shù)列,且bm=a,bn=b(m≠n,m,n∈N+).
(1)請(qǐng)給出已知命的證明;
(2)類(lèi)比(1)的方法與結(jié)論,推導(dǎo)出bm+n

查看答案和解析>>

同步練習(xí)冊(cè)答案