5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在x=1處取得極值.
(1)求a的值,并討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x∈[1,+∞)時(shí),f(x)≥$\frac{m}{1+x}$恒成立,求實(shí)數(shù)m的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),求出a的值,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問(wèn)題轉(zhuǎn)化為m≤$\frac{(1+x)(1+lnx)}{x}$,根據(jù)函數(shù)的單調(diào)性求出h(x)的最小值,從而求出m的范圍即可.

解答 解:(1)由題意得f′(x)=$\frac{1-a-lnx}{{x}^{2}}$,
所以f'(1)=1-a=0即a=1,∴f′(x)=$\frac{-lnx}{{x}^{2}}$,
令f'(x)>0,可得0<x<1,令f'(x)<0,可得x>1,
所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.
(2)由題意要使x∈[1,+∞)時(shí),f(x)≥$\frac{m}{1+x}$恒成立,
即m≤$\frac{(1+x)(1+lnx)}{x}$,記h(x)=$\frac{(1+x)(1+lnx)}{x}$,則m≤[h(x)]min
h′(x)=$\frac{x-lnx}{{x}^{2}}$,又令g(x)=x-lnx,
則g′(x)=1-$\frac{1}{x}$,又x≥1,所以g′(x)=1-$\frac{1}{x}$≥0,
所以g(x)在[1,+∞)上單調(diào)遞增,
即g(x)≥g(1)=1>0,
∴h′(x)=$\frac{x-lnx}{{x}^{2}}$>0,
即h(x)在[1,+∞)上單調(diào)遞增,
所以[h(x)]min=h(1)=2,
∴m≤2.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若點(diǎn)A的坐標(biāo)為($\frac{1}{2}$,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),點(diǎn)M在拋物線上移動(dòng)時(shí),使|MF|+|MA|取得最小值的M的坐標(biāo)為($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=3,S6=15,則a10+a11+a12=( 。
A.21B.30C.12D.39

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,1)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-1)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F2和上頂點(diǎn)B在直線3x+$\sqrt{3}$y-3=0上,M、N為橢圓C上不同兩點(diǎn),且滿足kBM•kBN=$\frac{1}{4}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線MN恒過(guò)定點(diǎn);
(3)求△BMN的面積的最大值,并求此時(shí)MN直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5-S4=3,則S9=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題P:函數(shù)y=lg(x2+2x+a)的定義域?yàn)镽;命題Q:不等式(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立.若P∨Q是真命題,P∧Q是假命題;求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合M={x|x2-3x-18≤0},N={x|1-a≤x≤2a+1}.
(1)若a=3,求M∩N和∁RN;
(2)若M∩N=N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.湖心有四座小島,其中任何三座都不在一條直線上.?dāng)M在它們之間修建3座橋,以便從其中任何一座小島出發(fā)皆可通過(guò)這三座橋到達(dá)其它小島.則不同的修橋方案有(  )
A.4種B.16種C.20種D.24種

查看答案和解析>>

同步練習(xí)冊(cè)答案