設(shè)方程,(為參數(shù)).表示的曲線為C,

(1)求曲線C上的動點到原點O的距離的最小值

(2)點P為曲線C上的動點,當(dāng)|OP|最小時(O為坐標(biāo)原點),求點P的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程設(shè)橢圓E的普通方程為
x23
+y2=1

(1)設(shè)y=sinθ,θ為參數(shù),求橢圓E的參數(shù)方程;
(2)點P(x,y)是橢圓E上的動點,求x-3y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中二模理)設(shè)方程,(θ為參數(shù)).表示的曲線為C,

(1)求曲線C上的動點到原點O的距離的最小值

(2)點P為曲線C上的動點,當(dāng)|OP|最小時(O為坐標(biāo)原點),求點P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程)設(shè)方程,(θ為參數(shù)).表示的曲線為C,

(1)求曲線C上的動點到原點O的距離的最小值(2)點P為曲線C上的動點,當(dāng)|OP|最小時(O為坐標(biāo)原點),求點P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山西省忻州市高二下學(xué)期期末聯(lián)考(文科)數(shù)學(xué)卷 題型:解答題

(本題滿分12分)(學(xué)選修4-4的選做題1,沒學(xué)的選做題2)
題1:已知點M是橢圓C:+ =1上的任意一點,直線l:x+2y-10=0.
(1)設(shè)x=3cosφ,φ為參數(shù),求橢圓C的參數(shù)方程;
(2)求點M到直線l距離的最大值與最小值.
題2:函數(shù)的一個零點是1,另一個零點在(-1,0)內(nèi),(1)求的取值范圍;
(2)求出的最大值或最小值,并用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南省海口市高考調(diào)研考試數(shù)學(xué)(理) 題型:解答題

(從22/23/24三道解答題中任選一道作答,作答時,請注明題號;若多做,則按首做題計入總分,滿分10分. 請將答題的過程寫在答題卷中指定的位置)(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是為參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線相交于,兩點,求M,N兩點間的距離.

查看答案和解析>>

同步練習(xí)冊答案