(本小題滿分12分)
已知橢圓
的離心率為
,焦點到相應準線的距離為
(1)求橢圓C的方程
(2)設直線
與橢圓C交于A、B兩點,坐標原點到直線
的距離為
,求
面積的最大值。
(1)
(2)
解:(1)
解得
橢圓C的方程為
(2)當
軸時,
,
當AB與x軸不垂直時,設直線
l的方程為
,
則
由
,
當且僅當
,
當
最大時,
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知三點
(1).求以
為焦點且過點P的橢圓的標準方程;
(2)設點P,
關于直線
的對稱點分別為
,求以
為焦點且過點
的雙曲線的標準方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(14分)設
F1、
F2分別為橢圓
C:
=1(
a>
b>0)的左、右兩個焦點.
(1)若橢圓
C上的點
A(1,
)到
F1、
F2兩點的距離之和等于4,寫出橢圓
C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段
F1K的中點的軌跡方程;
(3)已知橢圓具有性質:若
M、
N是橢圓
C上關于原點對稱的兩個點,點
P是橢圓上任意一點,當直線
PM、
PN的斜率都存在,并記為
kPM、
kPN時,那么
kPM與
kPN之積是與點
P位置無關的定值.試對雙曲線
寫出具有類似特性的性質,并加以證明.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)雙曲線
與橢圓
有相同的焦點,直線
是雙曲線
的
一條漸近線.
(1)求雙曲線
的方程;
(2)已知過點
的直線
與雙曲線
交于
、
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率是
,右焦點
到上頂點的距離為
,點
是線段
上的一個動點.
(1)求橢圓的方程;
(2)是否存在過點
且與
軸不垂直的直線
與橢圓交于
、
兩點,使得
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設斜率為1的直線
與橢圓
相交于不同的兩點A、B,則使
為整數(shù)的直線
共有( ) A.4條 B.5條 C.6條 D.7條
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是橢圓
的兩個焦點,P是橢圓上的一點,若
的內切圓半徑為1,則點P到x軸的距離為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若
是橢圓
的兩個焦點,過
作直線與橢圓交于A,B兩點,
的周長為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的焦點在y軸上,
則
的取值范圍是( )
查看答案和解析>>