已知函數(shù)f(x)=x3-3x,過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,則m的取值范圍( )
A.(-3,-2)
B.(-2,3)
C.(-2,-1)
D.(-1,1)
【答案】分析:先將過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線轉(zhuǎn)化為:方程2x3-3x2+m+3=0(*)有三個(gè)不同實(shí)數(shù)根,記g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1),下面利用導(dǎo)數(shù)研究函數(shù)g(x)的零點(diǎn),從而求得m的范圍.
解答:解:由題意得:f′(x)=3x2-3,設(shè)切點(diǎn)為(x,y),
則切線的斜率k=3x2-3==
即2x3-3x2+m+3,由條件知該方程有三個(gè)實(shí)根,
∴方程2x3-3x2+m+3=0(*)有三個(gè)不同實(shí)數(shù)根,
記g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1)
令g'(x)=0,x=0或1,
則x,g'(x),g(x)的變化情況如下表
x(-∞,0)(0,1)1(1,+∞)
g'(x)+-+
g(x)遞增極大遞減極小遞增
當(dāng)x=0,g(x)有極大值m+3;x=1,g(x)有極小值m+2,
由題意有,當(dāng)且僅當(dāng)時(shí),
函數(shù)g(x)有三個(gè)不同零點(diǎn),
此時(shí)過點(diǎn)A可作曲線y=f(x)的三條不同切線.故m的范圍是(-3,-2).
故選A.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案