設(shè)實(shí)數(shù)x、y滿足
x≥0
x-2y≥0
x-y-2≤0
,則2x+y的最小值為______.
先根據(jù)約束條件畫出可行域,
設(shè)z=2x+y,
將最大值轉(zhuǎn)化為y軸上的截距,
當(dāng)直線z=2x+y經(jīng)過點(diǎn)A(0,-2)時(shí),z最小,
最小值是:2×0+(-2)=-2.
故答案為:-2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知實(shí)數(shù)x,y滿足x2+y2-2x-2y+1=0,且y≥x,求2x-y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人上午7時(shí),乘摩托艇以勻速vnmile/h(4≤v≤20)從A港出發(fā)到距50nmile的B港去,然后乘汽車以勻速wkm/h(30≤w≤100)自B港向距300km的C市駛?cè)ィ畱?yīng)該在同一天下午4至9點(diǎn)到達(dá)C市.設(shè)乘汽車、摩托艇去所需要的時(shí)間分別是xh、yh.
(1)作圖表示滿足上述條件的x、y范圍;
(2)如果已知所需的經(jīng)費(fèi)p=100+3×(5-x)+2×(8-y)(元),那么v、w分別是多少時(shí)走得最經(jīng)濟(jì)?此時(shí)需花費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)x、y滿足條件|x|+|y|<1時(shí),變量u=
y
x-3
的取值范圍是( 。
A.(-3,3)B.(-
1
3
,
1
3
)
C.[-
1
3
,
1
3
]
D.(-
1
3
,0)∪(0,
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)實(shí)數(shù)x,y滿足不等式組
y+x≤1
y-x≤2
y≥0
,則z=x-2y的最小值是( 。
A.-
7
2
B.-2C.1D.
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)變量x,y滿足約束條件:
x-y+3≥0
x+y≥0
x≤3
,則z=x+2y的最大值為(  )
A.21B.-3C.15D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)實(shí)數(shù)x,y滿足不等式組
x+y-11≤0
3x-y+3≤0
x≥0
,則z=2x+y的最大值為( 。
A.13B.19C.24D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

原點(diǎn)和點(diǎn)(1,1)在直線x+y-a=0兩側(cè),則a的取值范圍是( 。
A.0≤a≤2B.0<a<2C.a(chǎn)=0或a=2D.a(chǎn)<0或a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果實(shí)數(shù)x、y滿足條件
x-y+1≥0
y+1≥0
x+y+1≤0
,則
y-1
x-1
的最小值為______;最大值為______.

查看答案和解析>>

同步練習(xí)冊答案