6.如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E、F分別是棱是AA′,CC′的中點(diǎn),過直線EF的平面分別與棱BB′,DD′交于M,N,設(shè)BM=x,x∈[0,1],給出以下四種說(shuō)法:
(1)平面MENF⊥平面BDD′B′;
(2)當(dāng)且僅當(dāng)x=$\frac{1}{2}$時(shí),四邊形MENF的面積最;
(3)四邊形MENF周長(zhǎng)L=f(x),x∈[0,1]是單調(diào)函數(shù);
(4)四棱錐C′-MENF的體積V=h(x)為常函數(shù),以上說(shuō)法中正確的為( 。
A.(2)(3)B.(1)(3)(4)C.(1)(2)(3)D.(1)(2)

分析 (1)利用面面垂直的判定定理去證明EF⊥平面BDD′B′.(2)四邊形MENF的對(duì)角線EF是固定的,所以要使面積最小,則只需MN的長(zhǎng)度最小即可.(3)判斷周長(zhǎng)的變化情況.(4)求出四棱錐的體積,進(jìn)行判斷.

解答 解:(1)連結(jié)BD,B′D′,則由正方體的性質(zhì)可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以正確.
(2)連結(jié)MN,因?yàn)镋F⊥平面BDD′B′,所以EF⊥MN,四邊形MENF的對(duì)角線EF是固定的,所以要使面積最小,則只需MN的長(zhǎng)度最小即可,此時(shí)當(dāng)M為棱的中點(diǎn)時(shí),即x=$\frac{1}{2}$時(shí),此時(shí)MN長(zhǎng)度最小,對(duì)應(yīng)四邊形MENF的面積最小.所以正確.
(3)因?yàn)镋F⊥MN,所以四邊形MENF是菱形.當(dāng)x∈[0,$\frac{1}{2}$]時(shí),EM的長(zhǎng)度由大變。(dāng)x∈[$\frac{1}{2}$,1]時(shí),EM的長(zhǎng)度由小變大.所以函數(shù)L=f(x)不單調(diào).所以錯(cuò)誤.
(4)連結(jié)C′E,C′M,C′N,則四棱錐則分割為兩個(gè)小三棱錐,它們以C′EF為底,以M,N分別為頂點(diǎn)的兩個(gè)小棱錐.因?yàn)槿切蜟′EF的面積是個(gè)常數(shù).M,N到平面C'EF的距離是個(gè)常數(shù),所以四棱錐C'-MENF的體積V=h(x)為常函數(shù),所以正確.
故選C.

點(diǎn)評(píng) 本題考查空間立體幾何中的面面垂直關(guān)系以及空間幾何體的體積公式,本題巧妙的把立體幾何問題和函數(shù)進(jìn)行的有機(jī)的結(jié)合,綜合性較強(qiáng),設(shè)計(jì)巧妙,對(duì)學(xué)生的解題能力要求較高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)f(x)是定義在R上的偶函數(shù),f(x)=-f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=x+2,則當(dāng)x∈[-2,0]時(shí),f(x)=( 。
A.f(x)=x+4B.f(x)=2+|x+1|C.f(x)=2-xD.f(x)=3-|x+1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.有一個(gè)容量為200的樣本,其頻率分布直方圖如圖所示,根據(jù)樣本的頻率分布直方圖估計(jì),樣本數(shù)據(jù)落在區(qū)間[10,12]內(nèi)的頻數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)直線l為拋物線y2=2px(p>0)的焦點(diǎn),且交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于C點(diǎn),已知|AF|=4,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率為$\frac{\sqrt{3}}{2}$,兩焦點(diǎn)分別為F1、F2,過F1的直線交橢圓C于M、N兩點(diǎn),且△MF2N的周長(zhǎng)為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若|MN|=$\frac{8}{5}$,求△MF2N的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知拋物線x2=2py(p>0)的焦點(diǎn)為F,過點(diǎn)F且傾斜角為150°的直線l與拋物線在第一、二象限分別交于A,B兩點(diǎn),則$\frac{{|{BF}|}}{{|{AF}|}}$等于( 。
A.3B.$7+4\sqrt{3}$C.$\frac{1}{3}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)中,是奇函數(shù)且在(0,+∞)上單調(diào)遞減的是( 。
A.y=x-1B.y=($\frac{1}{2}$)xC.y=x3D.$y={log_{\frac{1}{2}}}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)$f(x)=lnx-\frac{2}{x}$的零點(diǎn)所在的大致區(qū)間是( 。
A.(e,+∞)B.$(\frac{1}{e},1)$C.(2,3)D.(e,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案