設函數(shù)C:f(x)=2ax-+lnx,若f(x)在x=1,x=-處取得極值,
(i )求a,b的值;
(ii)在[,2]存在x,使得不等式f(x)-c≤0,求c的最小值.
【答案】分析:( i )根據(jù)題意可得函數(shù)的定義域為(0,+∞),然后對函數(shù)求導可得f′(x)=2a++.∵f(x)在x=1,x=-處取得極值,∴f′(1)=0,f′()=0,可求,b的值;
(ii)在[,2]存在存在x,使得不等式f(x)-c≤0,只需c≥[f(x)]min,可解.
解答:解:(i)∵f(x)=2ax-+lnx,定義域為(0,+∞),
∴f′(x)=2a++
∵f(x)在x=1,x=-處取得極值,
∴f′(1)=0,f′()=0,

解得:,
∴所求a,b的值為-,-
(ii)在[,2]存在存在x,使得不等式f(x)-c≤0,只需c≥[f(x)]min,
由f′(x)=-x-+=-=-
∴當x∈[,]時,f′(x)<0,故f(x)在[]是單調遞減,
當x∈[,1]時,f′(x)>0,故f(x)在[,1]是單調遞增,
當x∈[1,2]時,f′(x)<0,故f(x)在[1,2]是單調遞減;
∴f()是f(x)在[,2]上的極小值,
而f()=+ln=-ln2,f(2)=-+ln2,
且f()-f(2)=-ln4=ln-ln4,
又e3-16>0,
∴l(xiāng)n-ln4>0,
∴[f(x)]min=f(2),
∴c≥[f(x)]min=-+ln2,
∴c的取值范圍為[-+ln2,+∞),
∴c的最小值為+ln2.
點評:(1)若函數(shù)在某點取得極值則該店的導數(shù)為0是導數(shù)最基本的考查
(2)函數(shù)的存在性問題、恒成立問題常轉化為求解函數(shù)的最值問題,結合導數(shù)的知識可求
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)C:f(x)=2ax-
b
x
+lnx,若f(x)在x=1,x=-
1
2
處取得極值,
(i )求a,b的值;
(ii)在[
1
4
,2]存在x0,使得不等式f(x0)-c≤0,求c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x-[x],其中[x]表示不超過x的最大整數(shù),則下列結論錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:河東區(qū)一模 題型:解答題

設函數(shù)C:f(x)=2ax-
b
x
+lnx,若f(x)在x=1,x=-
1
2
處取得極值,
(i )求a,b的值;
(ii)在[
1
4
,2]存在x0,使得不等式f(x0)-c≤0,求c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京市高三復習數(shù)學練習試卷(理科)(解析版) 題型:解答題

設函數(shù)C:f(x)=2ax-+lnx,若f(x)在x=1,x=-處取得極值,
(i )求a,b的值;
(ii)在[,2]存在x,使得不等式f(x)-c≤0,求c的最小值.

查看答案和解析>>

同步練習冊答案