【題目】黑板上寫有,1,2,…,666,這666個正整數(shù),第一步劃去最前面的八個數(shù):1,2,…,8,,并在666后面寫上1,2,…,8的和36;第二步再劃去最前面的八個數(shù):9,10,…,16,并在最后面寫上9,10,…,16的和100;如此繼續(xù)下去(即每一步劃去最前面的八個數(shù),并在最后寫上劃去的八個數(shù)的和).

(1)問:經過多少步后,黑板上只剩下一個數(shù)?

(2)當黑板上只剩下一個數(shù)時,求出在黑板上出現(xiàn)過的所有數(shù)的和(如果一個數(shù)多次出現(xiàn)需重復計算).

【答案】(1)見解析;(2)

【解析】

(1)由于每一步均減少了七個數(shù),故經過步后,只剩下了一個數(shù).

(2)由,則經過步后,有512個數(shù).

在22步中,一共劃去了個數(shù),其和為.

.

則經過22步后,剩下的512個數(shù)的和還是.

假設原來有個數(shù),其和為. 則經過步后,原來的個數(shù)都劃去了,黑板上剩下的個數(shù)的和仍然是.

因此,當繼續(xù)下去黑板上只剩下一個數(shù)時,所有數(shù)的和是.

所以,當黑板上只剩下一個數(shù)時,在黑板上出現(xiàn)過的所有數(shù)的和為

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐,側棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機調查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如圖所示:

年齡

不支持“延遲退休年齡政策”的人數(shù)

(1)由頻率分布直方圖,估計這人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認為以歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

附:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),.

1)求a的值

2)判斷函數(shù)上的單調性,說明理由;

3)若任意,不等式總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,點在橢圓上,滿足.

(1)求橢圓的標準方程;

(2)直線過點,且與橢圓只有一個公共點,直線的傾斜角互補,且與橢圓交于異于點的兩點,,與直線交于點介于,兩點之間).

(i)求證:

(ii)是否存在直線,使得直線、、的斜率按某種順序能構成等比數(shù)列?若能,求出的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知四棱錐的底面ABCD是邊長為2的正方形,底面ABCD,E,F分別為棱BC,AD的中點.

,求異面直線PBDE所成角的余弦值.

若二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M的方程為,直線l的方程為,點P在直線l上,過P點作圓M的切線,,切點為A,B.

1)若,試求點P的坐標;

2)求證:經過A,P,M三點的圓必過定點,并求出所有定點的坐標;

3)設線段的中點為N,求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若1路、2路公交車均途經泉港一中校門口,其中1路公交車每10分鐘一趟,2路公交車每20分鐘一趟,某生去坐這2趟公交車回家,則等車不超過5分鐘的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”是一個類似計步數(shù)據(jù)庫的公眾帳號,用戶只需以運動手環(huán)或手機協(xié)處理器的運動教據(jù)為介,然后關注該公眾號,就能看見自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn),現(xiàn)隨機選取朋友圈中的50人記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

規(guī)定:人一天行走的步數(shù)超過8000步時被系統(tǒng)評定為“積極性”,否則為“懈怠性”.

(1)填寫下面列聯(lián)表(單位:人),并根據(jù)列聯(lián)表判斷是否有的把握認為“評定類型與性別有關”;

附:

(2)為了進一步了解“懈怠性”人群中每個人的生活習慣,從步行在的人群中再隨機抽取3人,求選中的人中男性人數(shù)超過女性人數(shù)的概率.

查看答案和解析>>

同步練習冊答案