已知拋物線C:與圓有一個公共點(diǎn),且在處兩曲線的切線為同一直線上。
(Ⅰ)求
(Ⅱ)設(shè)是異于且與都切的兩條直線,的交點(diǎn)為,求的距離。
解:(1)設(shè),對求導(dǎo)得,故直線的斜率,
當(dāng)時,不合題意,
所心
圓心為,的斜率
,即,
解得,故
所以
(2)設(shè)上一點(diǎn),則在該點(diǎn)處的切線方程為
若該直線與圓相切,則圓心到該切線的距離為,
,化簡可得
求解可得
拋物線在點(diǎn)處的切線分別為,
其方程分別為
② 
 
②-③得
代入②得,
所以到直線的距離為。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=4y與圓x2+y2=32相交于A,B兩點(diǎn),圓與y軸正半軸交于C點(diǎn),直線l是圓的切線,交拋物線與M,N,并且切點(diǎn)在
ACB
上.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)當(dāng)M,N兩點(diǎn)到拋物線焦點(diǎn)距離和最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(陜西卷)文科數(shù)學(xué)全解全析 題型:選擇題

已知拋物線的準(zhǔn)線與圓相切,則p的值為

(A)                      (B)1                        (C)2                        (D)4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)(注意:在試題卷上作答無效)

已知拋物線C:與圓有一個公共點(diǎn)A,且在A處兩曲線的切線與同一直線

(I)        求r;

(II)    設(shè)m、n是異于且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到的距離。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(大綱卷解析版) 題型:解答題

已知拋物線C:與圓有一個公共點(diǎn)A,且在A處兩曲線的切線與同一直線l

(I)     求r;

(II)   設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離。

【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點(diǎn)處的切線的運(yùn)用,并在此基礎(chǔ)上求解點(diǎn)到直線的距離。

【點(diǎn)評】該試題出題的角度不同于平常,因?yàn)樯婕暗氖莾蓚二次曲線的交點(diǎn)問題,并且要研究兩曲線在公共點(diǎn)出的切線,把解析幾何和導(dǎo)數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學(xué)習(xí)也是一個需要練習(xí)的方向。

 

 

查看答案和解析>>

同步練習(xí)冊答案