1.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),若對(duì)任意實(shí)數(shù)x,有f(x)>f'(x),且f(x)+2017為奇函數(shù),則不等式f(x)+2017ex<0的解集是( 。
A.(-∞,0)B.(0,+∞)C.$({-∞,\frac{1}{e}})$D.$({\frac{1}{e},+∞})$

分析 令2017g(x)=$\frac{f(x)}{{e}^{x}}$,(x∈R),從而求導(dǎo)g′(x)<0,從而可判斷y=g(x)單調(diào)遞減,從而可得到不等式的解集.

解答 解:設(shè)2017g(x)=$\frac{f(x)}{{e}^{x}}$,由f(x)>f′(x),
得:g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,
故函數(shù)g(x)在R遞減,
由f(x)+2017為奇函數(shù),得f(0)=-2017,
∴g(0)=-1,
∵f(x)+2017ex<0,∴$\frac{f(x)}{{e}^{x}}$<-2017,即g(x)<g(0),
結(jié)合函數(shù)的單調(diào)性得:x>0,
故不等式f(x)+2017ex<0的解集是(0,+∞).
故選B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的性質(zhì)的應(yīng)用,構(gòu)造函數(shù)的思想,閱讀分析問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.學(xué)完解析幾何和立體幾何后,某同學(xué)發(fā)現(xiàn)自己家碗的側(cè)面可以看做拋物線的一部分曲線圍繞其對(duì)稱軸旋轉(zhuǎn)而成,他很想知道拋物線的方程,決定把拋物線的頂點(diǎn)確定為原點(diǎn),對(duì)稱軸確定為x軸,建立如圖所示的平面直角坐標(biāo)系,但是他無法確定碗底中心到原點(diǎn)的距離,請(qǐng)你通過對(duì)碗的相關(guān)數(shù)據(jù)的測(cè)量以及進(jìn)一步的計(jì)算,幫助他求出拋物線的方程.你需要測(cè)量的數(shù)據(jù)是碗底的直徑2m,碗口的直徑2n,碗的高度h(所有測(cè)量數(shù)據(jù)用小寫英文字母表示),算出的拋物線標(biāo)準(zhǔn)方程為y2=$\frac{{n}^{2}-{m}^{2}}{h}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等腰三角形ABC,E為底邊BC的中點(diǎn),沿AE折疊,如圖,將C折到點(diǎn)P的位置,使P-AE-C為120°,設(shè)點(diǎn)P在面ABE上的射影為H.
(1)證明:點(diǎn)H為EB的中點(diǎn);
(2)) 若$AB=AC=2\sqrt{2},AB⊥AC$,求直線BE與平面ABP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合A={0,1},B={y|y=2x,x∈A},則(∁RA)∩B=(  )
A.{0}B.{2}C.{2,4}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=-\frac{2f'(1)}{3}\sqrt{x}-{x^2}$的最大值為f(a),則a等于( 。
A.$\frac{1}{16}$B.$\frac{{\root{3}{4}}}{4}$C.$\frac{1}{4}$D.$\frac{{\root{3}{4}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在四棱錐中P-ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點(diǎn)G,使得二面角C-PD-G的余弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請(qǐng)求出點(diǎn)G的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}的首項(xiàng)a1=2,且${a_{n+1}}=3{a_n}+2({n∈{N^*}})$;令bn=log3(an+1),則b1+b2+b3+…+b100=5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得到下表數(shù)據(jù)
x681012
y2356
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)試根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.
(相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$x,參考數(shù)據(jù)$\sum_{i=1}^{4}$xiyi=158,$\sum_{i=1}^{4}$x${\;}_{i}^{2}$=344)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知三棱柱ABC-A1B1C1中,底面三角形ABC是直角三角形,四邊形A1ACC1和四邊形A1ABB1均為正方形,D,E,F(xiàn)分別是A1B1,C1C,BC的中點(diǎn),AB=1.
(Ⅰ)證明:DF⊥平面ABE;
(Ⅱ)求三棱錐A1-ABE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案