(2012•南寧模擬)已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x.(a∈R,e為自然對(duì)數(shù)的底數(shù))
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0,
12
)
上無零點(diǎn),求a的最小值.
分析:(1)把a(bǔ)等于1代入到f(x)中求出f′(x),令f′(x)大于0求出x的范圍即為函數(shù)的增區(qū)間,令f′(x)小于0求出x的范圍即為函數(shù)的減區(qū)間;
(2)f(x)小于0時(shí)不可能恒成立,所以要使函數(shù)在(0,
1
2
)上無零點(diǎn),只需要對(duì)x屬于(0,
1
2
)時(shí)f(x)大于0恒成立,列出不等式解出a大于一個(gè)函數(shù),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性,根據(jù)函數(shù)的增減性得到這個(gè)函數(shù)的最大值即可得到a的最小值.
解答:解:(1)當(dāng)a=1時(shí),f(x)=x-1-2lnx,x>0,
求其導(dǎo)數(shù)可得f′(x)=1-
2
x
,
令1-
2
x
>0,可得x>2,令1-
2
x
<0,可得0<x<2,
故此時(shí)函數(shù)的單調(diào)遞減區(qū)間為(0,2),
單調(diào)遞增區(qū)間為(2,+∞);
(2)因?yàn)閒(x)<0在區(qū)間(0,
1
2
)
上恒成立不可能,
故要使函數(shù)f(x)在(0,
1
2
)
上無零點(diǎn),
只要對(duì)任意的x∈(0,
1
2
)
,f(x)>0恒成立,即對(duì)x∈(0,
1
2
),a>2-
2lnx
x-1
恒成立.
l(x)=2-
2lnx
x-1
,x∈(0,
1
2
)
,則l′(x)=-
2
x
(x-1)-2lnx
(x-1)2
=
2lnx+
2
x
-2
(x-1)2
,
再令m(x)=2lnx+
2
x
-2,x∈(0,
1
2
)
,
m′(x)=
2
x
-
2
x2
=
-2(1-x)
x2
<0
,
故m(x)在(0,
1
2
)
上為減函數(shù),
于是m(x)>m(
1
2
)=2-2ln2>0
,
從而,l′(x)>0,于是l(x)在(0,
1
2
)
上為增函數(shù),
所以l(x)<l(
1
2
)=2-4ln2
,
故要使a>2-
2lnx
x-1
恒成立,只要a∈[2-4ln2,+∞),
綜上,若函數(shù)f(x)在(0,
1
2
)
上無零點(diǎn),則a的最小值為2-4ln2;
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)若函數(shù)y=f(x)的圖象經(jīng)過(0,-1),則y=f(x+4)的反函數(shù)圖象經(jīng)過點(diǎn)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,AE=1,CD與平面ABDE所成角的正弦值為
6
4

(1)在線段DC上是否存在一點(diǎn)F,使得EF⊥面DBC,若存在,求線段DF的長度,若不存在,說明理由;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)若Sn=1-2+3-4+…+(-1
)
n-1
 
•n,S17+S33+S50等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)已知命題p:
2x
x-1
≤1
,命題q:(x+a)(x-3)<0,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)從6個(gè)運(yùn)動(dòng)員中選出4人參加4×100米的接力賽,如果甲、乙兩人都不跑第一棒,那么不同的參賽方法的種數(shù)為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案