(1)求數列{bn}的通項公式;
(2)設有拋物線列c1、c2、…cn、…,拋物線cn(n∈N)的對稱軸平行于y軸,頂點為(an,bn),且通過點Dn(0,n2+1),過點Dn且與拋物線cn相切的直線斜率為kn,求極限;
(3)設集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差數列{cn}的任一項cn∈X∩Y,
c1是X∩Y中的最大數,且-265<c10<-125,求{cn}的通項公式.
①{bn}的通項公式是bn=-.
②設拋物線Cn的方程為y=a(x+)2-?
因為Dn(0,n2+1)在此拋物線上,即得a=1,?
因此,Cn的方程為y= a(x+)2-.?
即:y=x2+(2n+3)x+n2+1?
∵y′=2x+(2n+3),?∴Dn處切線斜率kn=2n+3
∴?
③對任意n∈N,2an=-3n-3 4bn=-12n-5=-2(6n+1)-3∈X?
∴YX,故可得X∩Y=Y,?
∵C1是X∩Y中的最大數,∴C1=-17.?
設等差數列{Cn}的公差為d,則C10=-17+9d
∵-265<-17+9d<-125得-27<d<-12?
∴d=-12m(m∈N) ∴d=-24 ∴Cn=7-24n(n∈N).
科目:高中數學 來源:數學教研室 題型:044
(1)求數列{bn}的通項公式;
(2)設有拋物線列C1,C2,…,Cn,…拋物線Cn(n∈N*)的對稱軸平行于y軸,頂點為(an,bn),且通過點Dn(0,n2+1),求點Dn且與拋物線Cn相切的直線斜率為kn,求極限.
(3)設集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*}.若等差數列{Cn}的任一項Cn∈X∩Y,C1是X∩Y中的最大數,且-265<C10<-125.求{Cn}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:044
若An和Bn分別表示數列{an}和{bn}前n項的和,對任意正整數n,an=-,4Bn-12An=13n.
(1)求數列{bn}的通項公式;
(2)設有拋物線列C1,C2,…,Cn,…拋物線Cn(n∈N*)的對稱軸平行于y軸,頂點為(an,bn),且通過點Dn(0,n2+1),求點Dn且與拋物線Cn相切的直線斜率為kn,求極限.
(3)設集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*}.若等差數列{Cn}的任一項Cn∈X∩Y,C1是X∩Y中的最大數,且-265<C10<-125.求{Cn}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)求數列{bn}的通項公式;
(2)設有拋物線列C1,C2,…,Cn,…,拋物線Cn(n∈N*)的對稱軸平行于y軸,頂點為(an,bn),且通過點Dn(0,n2+1),過點Dn且與拋物線Cn相切的直線的斜率為kn,求極限.
(3)設集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*},若等差數列{Cn}的任一項Cn∈X∩Y,C1是X∩Y中的最大數,且-265<C10<-125,求{Cn}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)求數列{bn}的通項公式;
(2)設有拋物線列c1、c2、…cn、…,拋物線cn(n∈N)的對稱軸平行于y軸,頂點為(an,bn),且通過點Dn(0,n2+1),過點Dn且與拋物線cn相切的直線斜率為kn,求極限;
(3)設集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差數列{cn}的任一項cn∈X∩Y, c1是X∩Y中的最大數,且-265<c10<-125,求{cn}的通項公式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com