已知拋物線上的兩個點,點的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.

)求k的取值范圍;

)設(shè)CW上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

 

【答案】

(Ⅰ);(2)四邊形不可能為梯形,理由詳見解析.

【解析】

試題分析:(Ⅰ)(Ⅰ)直線過點,且斜率為k,所以直線方程可設(shè)為,若焦點在直線的下方,則滿足不等式,代入求的范圍;(Ⅱ)設(shè)直線的方程為,,分別與拋物線聯(lián)立,因為直線和拋物線的一個交點坐標(biāo)已知,故可利用韋達定理求出切點的橫坐標(biāo),則可求在點處的切線斜率,若四邊形是否為梯形,則有得,根據(jù)斜率相等列方程,所得方程無解,故四邊形不是梯形.

試題解析:(Ⅰ)解:拋物線的焦點為.由題意,得直線的方程為,

,得,即直線y軸相交于點.因為拋物線的焦點在直線的下方,

所以,解得,因為,所以.

(Ⅱ)解:結(jié)論:四邊形不可能為梯形.理由如下:

假設(shè)四邊形為梯形.由題意,設(shè),

聯(lián)立方程,消去y,得,由韋達定理,得,所以.

同理,得.對函數(shù)求導(dǎo),得,所以拋物線在點處的切線的斜率為,拋物線在點處的切線的斜率為.

由四邊形為梯形,得.

,則,即,因為方程無解,所以不平行.

,則,即,因為方程無解,所以不平行.所以四邊形不是梯形,與假設(shè)矛盾.因此四邊形不可能為梯形.

考點:1、直線的方程;2、直線和拋物線的位置關(guān)系;3、導(dǎo)數(shù)的幾何意義.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點C為拋物線y2=2px(p>0)的準(zhǔn)線與x軸的交點,點F為焦點,點A、B是拋物線上的兩個點.若
.
FA
+
.
FB
+2
.
FC
=
.
0
,則向量
.
FA
.
FB
的夾角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A和B是拋物線上的兩個動點,且在A和B處的拋物線切線相互垂直,已知由A、B及拋物線的頂點所成的三角形重心的軌跡也是一拋物線,記為L1.對L1重復(fù)以上過程,又得一拋物線L2,余類推.設(shè)如此得到拋物線的序列為L1,L2,…,Ln,若拋物線的方程為y2=6x,經(jīng)專家計算得,L1:y2=2(x-1),L2y2=
2
3
(x-1-
1
3
)=
2
3
(x-
4
3
)
,L3y2=
2
9
(x-1-
1
3
-
1
9
)=
2
9
(x-
13
9
)
,…,Lny2=
2
Sn
(x-
Tn
Sn
)
.   則2Tn-3Sn=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線上的兩個點,點的坐標(biāo)為,直線的斜率為k, 為坐標(biāo)原點.

)若拋物線的焦點在直線的下方,求k的取值范圍;

)設(shè)CW上一點,且,過兩點分別作W的切線,記兩切線的交點為,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)AB是拋物線上的兩個動點,且在AB處的拋物線切線相互垂直, 已知由A、B 及拋物線的頂點P所成的三角形重心的軌跡也是一拋物線, 記為L1.對重復(fù)以上過程,又得一拋物線L2,以此類推.設(shè)如此得到拋物線的序列為L1,L2,…, Ln,若拋物線的方程為,經(jīng)專家計算得,

 ,

 ,

 ,

 

 

    則=      

 

查看答案和解析>>

同步練習(xí)冊答案