(1)求f(x)的解析式;
(2)若對于任意實數α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.
解:(1)由題意有f(0)=c=0,f′(x)=3x2+2ax+b且f′(1)=3+2a+b=0.
又曲線y=f(x)在原點處的切線的斜率k=f′(0)=b,而直線y=2x+3到此切線所成的角為45°,∴1=tan45°=.解得b=-3,代入f′(1)=3+2a+b=0得a=0,∴f(x)=x3-3x.
(2)由f′(x)=3x2-3=3(x-1)(x+1)可知,f(x)在(-∞,-1]和[1,+∞)上遞增,在[-1,1]上遞減.又f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2,∴f(x)在[-2,2]上的最大值和最小值分別為2和-2.
又∵sinα∈[-2,2],2sinβ∈[-2,2],
∴|f(2sinα)-f(2sinβ)|≤4.故m的最小值為4.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數學 來源:浙江省東陽中學高三10月階段性考試數學理科試題 題型:022
已知函數f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值,若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.已知函數f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數”,則k的值是_________.
查看答案和解析>>
科目:高中數學 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數學試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com