計(jì)算:-2-2-
(-
1
2
)
2
+(π-3.14)0
分析:利用指數(shù)冪的運(yùn)算法則即可得出.
解答:解:原式=-
1
22
-
1
2
+1
=
1
2
-
1
4
=
1
4
點(diǎn)評(píng):本題考查了指數(shù)冪的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:先改寫(xiě)第k項(xiàng):k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)]由此得
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3)

n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]
相加,得1×2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
類(lèi)比上述方法,請(qǐng)你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”,

其結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),有如下方法:
先改寫(xiě)第k項(xiàng):k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
類(lèi)比上述方法,請(qǐng)你計(jì)算“1×3+2×4+…+n(n+2)”,其結(jié)果寫(xiě)成關(guān)于n的一次因式的積的形式為:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省臨川二中、新余四中2012屆高三第一次聯(lián)考數(shù)學(xué)文科試題 題型:022

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:先改寫(xiě)第k項(xiàng):k(k+1)=[k(k+1)(x+2)-(k-1)k(k+1)],由此得

1×2=(1×2×3-0×1×2)

2×3=(2×3×4-1×2×3)

n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]

相加,得

1×2+2×3+…+n(n+1)=n(n+1)(n+2)

類(lèi)比上述方法,請(qǐng)你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其結(jié)果為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(新課標(biāo)1卷解析版) 題型:解答題

(本小題滿分共12分)為了比較兩種治療失眠癥的藥(分別成為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間(單位:h)實(shí)驗(yàn)的觀測(cè)結(jié)果如下:

服用A藥的20位患者日平均增加的睡眠時(shí)間:

0.6   1.2   2.7   1.5    2.8   1.8   2.2   2.3    3.2   3.5

2.5   2.6   1.2   2.7    1.5   2.9   3.0   3.1    2.3   2.4

服用B藥的20位患者日平均增加的睡眠時(shí)間:

3.2    1.7     1.9     0.8     0.9    2.4     1.2     2.6     1.3     1.4

1.6    0.5     1.8     0.6     2.1    1.1     2.5     1.2     2.7     0.5

(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果來(lái)看,哪種藥的效果好?

(2)完成莖葉圖,從莖葉圖來(lái)看,哪種藥療效更好?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),有如下方法:
先改寫(xiě)第k項(xiàng):k(k+1)=數(shù)學(xué)公式[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=數(shù)學(xué)公式(1×2×3-0×1×2),
2×3=數(shù)學(xué)公式(2×3×4-1×2×3),…,
n(n+1)=數(shù)學(xué)公式[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=數(shù)學(xué)公式(n+1)(n+2).
類(lèi)比上述方法,請(qǐng)你計(jì)算“1×3+2×4+…+n(n+2)”,其結(jié)果寫(xiě)成關(guān)于n的一次因式的積的形式為:________.

查看答案和解析>>

同步練習(xí)冊(cè)答案