在平面直角坐標系中,對于函數(shù)y=f(x)的圖象上不重合的兩點A,B,若A,B關(guān)于原點對稱,則稱點對(A,B)是函數(shù)y=f(x)的一組“奇點對”(規(guī)定(A,B)與(B,A)是相同的“奇點對”).函數(shù)f(x)=
-x+4(x>0)
1
2
x2+2x(x<0)
的“奇點對”的組數(shù)是
 
考點:分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)“奇點對”的定義可知,只需要利用圖象,作出函數(shù)f(x)=-x+4,x>0關(guān)于原點對稱的圖象,利用對稱圖象在x<0上兩個圖象的交點個數(shù),即為“奇點對”的個數(shù).
解答: 解:由題意知函數(shù)f(x)=-x+4,x>0關(guān)于原點對稱的圖象為-y=x+4,
即y=-x-4,x<0
在x<0上作出兩個函數(shù)的圖象如圖,
由圖象可知兩個函數(shù)在x<0上的交點個數(shù)有2個,
∴函數(shù)f(x)的“奇點對”有2組,
故答案為:2.
點評:本題主要考查新定義題目,讀懂題意,利用數(shù)形結(jié)合的思想是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是計算
1
2
+
1
4
+
1
8
+
1
16
+
1
32
值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A、K>5?B、K<5?
C、K>10?D、K<10?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,若輸入m=1,n=2,則輸出n=( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(-2,0),
OB
=(0,2)(O為坐標原點),點C在曲線
x=1+cosθ
y=sinθ
(θ為參數(shù))上運動,則△ABC面積的最大值為( 。
A、3-
2
B、3+
2
C、
6+
2
2
D、
3-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖程序框圖,那么輸出S的值為( 。
A、
49
100
B、
99
100
C、
97
198
D、
99
202

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)2x=5y=m,且
1
x
+
1
y
=2,則m的值是( 。
A、±
10
B、
10
C、10
D、100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)的坐標滿足條件:
y≤0
y≥x
x≥-1
,則
3
x+y的最小值為( 。
A、
3
B、0
C、-
3
-1
D、-
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(
3
x+
π
6
)

(Ⅰ)請用“五點法”畫出函數(shù)f(x)在一個周期上的圖象(先列表,再畫圖);
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)求f(x)在[-
1
2
,
3
4
]
上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,2),
b
=(2,x),
c
=(x,-3),若
a
b
,則|
c
|
等于( 。
A、
10
B、10
C、
5
D、5

查看答案和解析>>

同步練習冊答案