一條變動的直線L與橢圓+=1交于P、Q兩點,M是L上的動點,滿足關(guān)系|MP|·|MQ|=2.若直線L在變動過程中始終保持其斜率等于1.求動點M的軌跡方程,并說明曲線的形狀.

 

【答案】

x2+2y2=1.

【解析】

試題分析:設(shè)動點M(x,y),動直線L:y=x+m,并設(shè)P(x1,y1),Q(x2,y2)是方程組的解,消去y,得3x2+4mx+2m2-4=0,其中Δ=16m2-12(2m2-4)>0,∴-<m<,且x1+x2=-,x1x2=,又∵|MP|=|x-x1|,|MQ|=|x-x2|.由|MP||MQ|=2,得|x-x1||x-x2|=1,也即

|x2-(x1+x2)x+x1x2|=1,于是有∵m=y-x,∴|x2+2y2-4|=3.由x2+2y2-4=3,得橢圓夾在直線間兩段弧,且不包含端點.由x2+2y2-4=-3,得橢圓x2+2y2=1.

考點:本題主要考查直線和圓錐曲線的位置關(guān)系、軌跡方程的求法。

點評:解答中從聯(lián)立方程組出發(fā),運用韋達定理,體現(xiàn)了整體觀,是解析幾何問題中的常見類型。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓O:x2+y2=1,直線l:y=kx+b(b>0)是圓的一條切線,且l與橢圓
x2
2
+y2=1
交于不同的兩點A、B.
(1)若△AOB的面積等于
2
3
,求直線l的方程;
(2)設(shè)△AOB的面積為S,且滿足
6
4
≤S≤
2
6
7
,求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓O:x2+y2=1,直線l:y=kx+b(k>0,b>0)是圓的一條切線,且l與橢圓
x2
2
+y2=1
交于不同的兩點A,B.
(1)若弦AB的長為
4
3
,求直線l的方程;
(2)當直線l滿足條件(1)時,求
OA
OB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個焦點分別是F1(0,-2
2
),F2(0,2
2
)
,離心率e=
2
2
3

(1)求橢圓的方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M,N,且線段MN中點的橫坐標為-
1
2
,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)已知橢圓W的中心在原點,焦點在x軸上,離心率為
6
3
,兩條準線間的距離為6,橢圓的左焦點為F,過左焦點與x軸的交點M任作一條斜率不為零的直線l與橢圓W交于不同的兩點A、B,點A關(guān)于x軸的對稱點為C.
(1)求橢圓W的方程;
(2)求證:
CF
FB
(λ∈R)

查看答案和解析>>

同步練習(xí)冊答案