等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2+a8+a11=30,那么S13值的是


  1. A.
    130
  2. B.
    65
  3. C.
    70
  4. D.
    以上都不對(duì)
A
分析:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,,利用等差數(shù)列的通項(xiàng)公式化簡(jiǎn)已知的等式a2+a8+a11=30得到a1+6d的值,然后利用等差數(shù)列的前n項(xiàng)和的公式表示出S13,利用等差數(shù)列的性質(zhì)化簡(jiǎn)后,把a(bǔ)1+6d的值代入即可求出值.
解答:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,由a2+a8+a11=30,可得a1+6d=10,
故S13==13a7=13(a1+6d)=13×10=130
故選A
點(diǎn)評(píng):此題要求學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式化簡(jiǎn)求值,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項(xiàng)和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項(xiàng)和為Rn,若Rn<λ對(duì)n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前2006項(xiàng)的和S2006=2008,其中所有的偶數(shù)項(xiàng)的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn
(Ⅱ)設(shè)cn=an+2bn(n∈N*),數(shù)列{cn}的前n項(xiàng)和為Tn.若對(duì)一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則a5+a6>0是S8≥S2的( 。
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案