設(shè)奇函數(shù)f(x)對(duì)任意x∈R都有f(x)=f(x-1)+
1
2

(1)求f(
1
2
)
f(
k
n
)+f(
n-k
n
)(k=0,1,2,…,n)
的值;
(2)數(shù)列{an}滿足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
-f(
1
2
)
,數(shù)列{an}是等差數(shù)列嗎?請(qǐng)給予證明.
(1)∵f(x)=f(x-1)+
1
2
,且f(x)是奇函數(shù)
f(
1
2
)=f(
1
2
-1)+
1
2
=f(-
1
2
)+
1
2
=-f(
1
2
)+
1
2

2f(
1
2
)=
1
2
,故f(
1
2
)=
1
4
(3分)
因?yàn)?span mathtag="math" >f(x)=f(x-1)+
1
2
=-f(1-x)+
1
2
,所以f(x)+f(1-x)=
1
2

x=
k
n
,得f(
k
n
)+f(1-
k
n
)=
1
2
,即f(
k
n
)+f(
n-k
n
)=
1
2
.(6分)
(2)令sn=f(0)+f(
1
n
)+…+f(
n-1
n
)+f(1)

sn=f(1)+f(
n-1
n
)+…+f(
1
n
)+f(0)

兩式相加2sn=[f(0)+f(1)]+[f(
1
n
)+f(
n-1
n
)]+…+[f(1)+f(0)]=
n+1
2

所以sn=
n+1
4
,(6分)
an=sn-f(
1
2
)=
n+1
4
-
1
4
=
n
4
,n∈N*
(10分)
an+1-an=
n+1
4
-
n
4
=
1
4
.故數(shù)列{an}是等差數(shù)列.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)奇函數(shù)f(x)對(duì)任意x∈R都有f(x)=f(x-1)+
1
2

(1)求f(
1
2
)
f(
k
n
)+f(
n-k
n
)(k=0,1,2,…,n)
的值;
(2)數(shù)列{an}滿足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
-f(
1
2
)
,數(shù)列{an}是等差數(shù)列嗎?請(qǐng)給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣東模擬)設(shè)奇函數(shù)f(x)對(duì)任意x∈R都有f(x)=f(x-1)+
1
2

(1)求f(
1
2
)
f(
k
n
)+f(
n-k
n
)(k=0,1,2,…,n)
的值;
(2)數(shù)列{an}滿足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
-f(
1
2
)
,數(shù)列{an}是等差數(shù)列嗎?請(qǐng)給予證明;
(3)設(shè)m與k為兩個(gè)給定的不同的正整數(shù),{an}是滿足(2)中條件的數(shù)列,
證明:
s
n=1
|
(m+1)nan+1
-
(kn+n+k+1)an
|<(
s+1
2
)
2
|
m
-
k
|
(s=1,2,…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省六校高三11月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)奇函數(shù)f(x)對(duì)任意x∈R都有
(1)求的值;
(2)數(shù)列{an}滿足:an=f(0)+,數(shù)列{an}是等差數(shù)列嗎?請(qǐng)給予證明;
(3)設(shè)m與k為兩個(gè)給定的不同的正整數(shù),{an}是滿足(2)中條件的數(shù)列,
證明:(s=1,2,…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省廣州市六校高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(廣東省實(shí)驗(yàn)中學(xué)、華師附中、廣州二中、廣雅中學(xué)、執(zhí)信中學(xué)、廣州六中)(解析版) 題型:解答題

設(shè)奇函數(shù)f(x)對(duì)任意x∈R都有
(1)求的值;
(2)數(shù)列{an}滿足:an=f(0)+,數(shù)列{an}是等差數(shù)列嗎?請(qǐng)給予證明;
(3)設(shè)m與k為兩個(gè)給定的不同的正整數(shù),{an}是滿足(2)中條件的數(shù)列,
證明:(s=1,2,…).

查看答案和解析>>

同步練習(xí)冊(cè)答案