【題目】已知函數(shù)f(x)=sin2x﹣
(I)求函數(shù)f(x)的值域;
(II)已知銳角△ABC的兩邊長(zhǎng)分別是函數(shù)f(x)的最大值和最小值,且△ABC的外接圓半徑為 ,求△ABC的面積.

【答案】解:(Ⅰ)函數(shù)f(x)=sin2x﹣

化簡(jiǎn)可得:f(x)=2sin(2x﹣

∵x∈[ , ]

可得: ,

所以當(dāng) ,即 時(shí),f(x)取得最大值為 ,

當(dāng) ,即 時(shí),f(x)取得最小值為 ,

函數(shù)f(x)的值域?yàn)閇 ,2].

(II)銳角△ABC的兩邊長(zhǎng)分別是函數(shù)f(x)的最大值和最小值,設(shè)AB=c= ,AC=b=2.

由正弦定理,

∴sinB= ,sinC=

△ABC是銳角三角形.

∴cosB= ,cosC=

可得sinA=sin(B+C)=sinBcosC+cosBsinC=

那么:△ABC的面積S= bcsinA=


【解析】(I)利用輔助角公式化簡(jiǎn)f(x),求出內(nèi)層函數(shù)的范圍,結(jié)合三角函數(shù)的性質(zhì)即可答案;(II)銳角△ABC的兩邊長(zhǎng)分別是函數(shù)f(x)的最大值和最小值,可得根據(jù)值求出相應(yīng)的角度,結(jié)合和與差公式即可求解△ABC的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對(duì)于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當(dāng)x∈(0,2]時(shí),f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關(guān)系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= sin(2x+φ)(|φ|< )的圖象關(guān)于直線x= 對(duì)稱,且當(dāng)x1 , x2∈(﹣ ,﹣ ),x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(sinx,﹣1), =(cosx, ),函數(shù)f(x)=( +
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位得到函數(shù)g(x)的圖象,在△ABC中,角A,B,C所對(duì)邊分別a,b,c,若a=3,g( )= ,sinB=cosA,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)(a,b)是區(qū)域 內(nèi)的任意一點(diǎn),則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績(jī)實(shí)行“3+3”的構(gòu)成模式,第一個(gè)“3”是語(yǔ)文、數(shù)學(xué)、外語(yǔ),每門滿分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級(jí)性考試,每門滿分100分,高考錄取成績(jī)卷面總分滿分750分.為了調(diào)查學(xué)生對(duì)物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體S,從學(xué)生群體S中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如表:

選考物理、化學(xué)、生物的科目數(shù)

1

2

3

人數(shù)

5

25

20

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學(xué)生中任選2名,記X表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(III)將頻率視為概率,現(xiàn)從學(xué)生群體S中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2 , P為雙曲線右支上一點(diǎn)(異于右頂點(diǎn)),△PF1F2的內(nèi)切圓與x軸切于點(diǎn)(2,0),過F2作直線l與雙曲線交于A,B兩點(diǎn),若使|AB|=b2的直線l恰有三條,則雙曲線離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于70為合格品,小于70為次品.現(xiàn)隨機(jī)抽取這種芯片共120件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

測(cè)試指標(biāo)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計(jì)生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤(rùn)不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤(rùn),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某城鎮(zhèn)由6條東西方向的街道和7條南北方向的街道組成,其中有一個(gè)池塘,街道在此變成一個(gè)菱形的環(huán)池大道.現(xiàn)要從城鎮(zhèn)的A處走到B處,使所走的路程最短,最多可以有種不同的走法.

查看答案和解析>>

同步練習(xí)冊(cè)答案