某種型號的汽車在水泥路面上的剎車距離s m和汽車車速x km/h有如下關(guān)系:s=x+x2.在一次交通事故中,測得這種車的剎車距離大于39.5 m,那么這輛汽車剎車前的車速至少是多少?(精確到0.01 km/h)

答案:
解析:

  解:設(shè)這輛汽車剎車前的車速至少為x km/h,

  根據(jù)題意,有x+x2>39.5,

  移項整理,得x2+9x-7110>0.

  顯然Δ>0,方程x2+9x-7110=0有兩個實數(shù)根,

  即x1≈-88.94,x2≈79.94.

  畫出二次函數(shù)y=x2+9x-7110的圖象,由圖象得不等式的解集為{x|x<-88.94或x>79.94},在這個實際問題中,x>0,所以這輛汽車剎車前的車速至少為79.94 km/h.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某種型號的汽車在勻速行駛中每小時耗油量p(L)關(guān)于行駛速度v(km/h)的函數(shù)解析式可以表示為:p=
1
128000
v3-
3
80
v+8
({0<v≤120}).已知甲、乙兩地相距100km,設(shè)汽車的行駛速度為x(km/h),從甲地到乙地所需時間為t(h),耗油量為y(L).
(1)求函數(shù)t=g(x)及y=f(x);
(2)求當x為多少時,y取得最小值,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=
1
128000
x3-
3
80
x+8(0<x≤120).已知甲、乙兩地相距100千米.
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=
1
128000
x3-
3
80
x+8(0<x≤120)
已知甲、乙兩地相距100千米.求當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為y=
1
128000
x3-
3
80
x+8,x∈(0,120]
,且甲、乙兩地相距100千米,則當汽車以
80
80
千米/小時的速度勻速行駛時,從甲地到乙地耗油量最少?

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江蘇南通第三中學高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

本小題滿分15分)統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=(0<x≤120).已知甲、乙兩地相距100千米.

(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?

(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

 

查看答案和解析>>

同步練習冊答案