函數(shù)f(x)=lg(sin2x-cos2x)的定義城是(  )
A、{x|2kπ-
4
<x<2kπ+
π
4
,k∈Z}
B、{x|2kπ+
π
4
<x<2kπ+
4
,k∈Z}
C、{x|kπ-
π
4
<x<kπ+
π
4
,k∈Z}
D、{x|kπ+
π
4
<x<kπ+
4
,k∈Z}
分析:據(jù)對數(shù)的真數(shù)大于0,列出不等式;利用二倍角的余弦公式可得cos2x<0,所以,
π
2
+2kπ<2x<
2
+2kπ,k∈Z,從而得到x的范圍.
解答:解:由sin2x>cos2x得cos2x-sin2x<0,即cos2x<0,所以,
π
2
+2kπ<2x<
2
+2kπ,k∈Z,
∴kπ+
π
4
<x<kπ+
4
,k∈Z,
故選D.
點評:本題考查二倍角的余弦公式的應(yīng)用,以及余弦函數(shù)的圖象性質(zhì).解答關(guān)鍵是利用二倍角公式化簡不等關(guān)系式cos2x-sin2x<0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(x2-4x)的單調(diào)遞增區(qū)間是
(4,+∞)
(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(ax2-ax+4)的定義域為R,則實數(shù)a的取值范圍是
0≤a<16
0≤a<16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(mx2+mx+1)的定義域是一切實數(shù),則m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=lg(3x-9)的定義域為A,集合B={x|2x-a<0,a∈R}.
(Ⅰ)求集合A;
(Ⅱ)求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(3x-2)+2恒過定點
 
;a⊕b=ab,a?b=a2+b2則函數(shù)f(x)=
2⊕xx?2-2
 

查看答案和解析>>

同步練習(xí)冊答案