若f(x)=λx+sinx是區(qū)間[-1,1]上的減函數(shù),且f(x)≤t2+λt+1在x∈[-1,1]上恒成立,求實(shí)數(shù)t的取值范圍( )
A.
B.t≤-1
C.t>-1
D.t≥-2
【答案】分析:利用g′(x)=λ+cosx≤0在[-1,1]上恒成立得出λ≤-cosx再結(jié)合三角函數(shù)的性質(zhì)即可求λ的取值范圍;先利用函數(shù)f(x)在[-1,1]上單調(diào)遞減,求出其最大值,再把f(x)≤t2-λt+1在x∈[-1,1]上恒成立轉(zhuǎn)化為其最大值小于等于t2-λt+1恒成立,進(jìn)而得到(1-t)λ+t2+sin1+1≥0(其中λ≤-1)恒成立,再利用一次函數(shù)恒成立問題的解法即可求t出的取值范圍.
解答:解:f(x)=λx+sinx是區(qū)間[-1,1]上的減函數(shù)
f′(x)=λ+cosx≤0在[-1,1]上恒成立
∴λ≤-cosx.…(5分)
又∵cosx∈[cos1,1],
∴-cosx∈[-1,-cos1].
∴λ≤-1.…(8分)
∵f(x)在區(qū)間[-1,1]上單調(diào)遞減,
因?yàn)閒(x)≤t2+λt+1在x∈[-1,1]上恒成立,
∴f(x)max=g(-1)=-λ-sin1.
只需-λ-sin1≤t2+λt+1.
恒成立.
令h(λ)=(t+1)λ+t2+sin1+1,


而t2-t+sin1≥0恒成立,
∴t≤-1.
故選B.
點(diǎn)評:本題主要考查函數(shù)單調(diào)性及函數(shù)恒成立問題.一次函數(shù)的恒成立問題一般要考慮一次項(xiàng)系數(shù)的符號及區(qū)間端點(diǎn)值的符號,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:a1=a≠0,a2≠a1,當(dāng)n∈N*時,an+1=f(an),且存在非零常數(shù)k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若數(shù)列{an}是等差數(shù)列,求k的值;
(2)求證:數(shù)列{an}為等比數(shù)列的充要條件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)是Sn,對于給定常數(shù)m,若
S(m+1)nSmn
的值是一個與n無關(guān)的量,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對x∈R,定義函數(shù)sgn(x)=
1,x>0
0,x=0
-1,x<0

(1)求方程 x2-3x+1=sgn(x) 的根;
(2)設(shè)函數(shù)f(x)=[sgn(x-2)]•(x2-2|x|)f(x)=[sgn(x-2)]•x2-2
.
.
,若關(guān)于x的方程f(x)=x+a有3個互異的實(shí)根,求實(shí)數(shù)a的取值范圍;
(3)記點(diǎn)集S={(x,y)|xsgn(x-1)•ysgn(y-1)=10,x>0,y>0} s={(x,y),點(diǎn)集T={(lgx,lgy)|(x,y)∈S},求點(diǎn)集T圍成的區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈S,f2(x)=x,則稱f(x)是集合M的元素,例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素;
(2)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濰坊二模)已知函數(shù)f(x)=x(x-a)(x-b),其中a、b∈R
(I)當(dāng)a=0,b=3時,求函數(shù),f(x)的極值;
(Ⅱ)當(dāng)a=0時,
f(x)x2
-lnx≥0在[1,+∞)上恒成立,求b的取值范圍
(Ⅲ)若0<a<b,點(diǎn)A(s,f(s)),B(t,f(t))分別是函數(shù)f(x)的兩個極值點(diǎn),且0A⊥OB,其中0為原點(diǎn),求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
(Ⅲ)若a1=f(0),不等式對不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案