設(shè) E1(其中a>0)為焦點(diǎn)在(3,0),(-3,0)的橢圓;E2:焦點(diǎn)在(3,0)且準(zhǔn)線為x=-3的拋物線.已知E1,E2的交點(diǎn)在直線x=3上,則 a=   
【答案】分析:作出圖形,如圖,P到準(zhǔn)線的距離是6,可求得PF1的長(zhǎng)度,由勾股定理求得PF2,再由橢圓的定義求出橢圓的長(zhǎng)軸即可求得a
解答:解:設(shè)P為拋物線E1與橢圓E2的交點(diǎn)

P在E1上,根據(jù)拋物線的定義,
P在E2上,根據(jù)橢圓的定義,
∵P在直線x=3上,


故答案為:
點(diǎn)評(píng):本題考查圓錐曲線的共同特征,解答本題關(guān)鍵是熟練掌握并會(huì)運(yùn)用橢圓的定義以及拋物線的定義,理解圖形中的垂直關(guān)系對(duì)解答本題也很重要.將題設(shè)中的位置關(guān)系轉(zhuǎn)化成方程,考查了轉(zhuǎn)化化歸的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
,
e3
,
e4
是平面內(nèi)的四個(gè)單位向量,其中
e1
e2
e3
e4
的夾角為135°,對(duì)這個(gè)平面內(nèi)的任一個(gè)向量
a
=x
e1
+y
e2
,規(guī)定經(jīng)過一次“斜二測(cè)變換”得到向量
a1
=x
e3
+
y
2
e4
,設(shè)向量
v
=3
e1
-4
e2
,則經(jīng)過一次“斜二測(cè)變換”得到向量
v1
的模|
v1
|
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
e2
,
e3
e4
是某平面內(nèi)的四個(gè)單位向量,其中
e1
e2
e3
e4
的夾角為1350,對(duì)這個(gè)平面內(nèi)的任一個(gè)向量
V
=x
e1
+ y
e2
,規(guī)定經(jīng)過一次“斜二測(cè)變換”得到向量
a
1=x
e3
+
y
2
e4
.設(shè)向量
v
=3
e1
-4
e2
,則經(jīng)過一次“斜二測(cè)變換”得到的向量
v1
的模|
v1
|
是(  )
A、13,
B、
13
C、
13+6
2
D、
13-6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
e3
,
e4
是某平面內(nèi)的四個(gè)單位向量,其中
e1
e2
e3
e4
的夾角為45°,對(duì)這個(gè)平面內(nèi)的任一個(gè)向量
a
=x
e1
+y
e2
,規(guī)定經(jīng)過一次“斜二測(cè)變換”得到向量
a1
=x
e3
+
y
2
e4
.設(shè)向量
t1
=-3
e3
-2
e4
,是經(jīng)過一次“斜二測(cè)變換”得到的向量
t1
,則|
t
|
是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•湖北模擬)設(shè)橢圓
x2
a2
+
y2
b2
=1
,雙曲線
x2
a2
-
y2
b2
=1
(其中a>b>0)的離心率分別為e1,e2有下列結(jié)論:①e1e2<1;②e12+e22=2;③e1e2>1;④e1e2=1;⑤e1+e2<2
其中正確的是
①②⑤
①②⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案