(1)已知x>-1,n∈N*,求證:(1+x)n≥1+nx
(2)已知m>0,n∈N*,ex≥m+nx對(duì)于x∈R恒成立,求m與n滿足的條件,并求當(dāng)n=1時(shí)m的值.
(3)已知x≤n,n∈N*.求證:n-n(1-
x
n
n•ex≤x2
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)設(shè)f(x)=(1+x)n-(1+nx),對(duì)函數(shù)f(x)求導(dǎo),得出最小值為f(0)=0;
(2)設(shè)M(x0,y0),得出切線方程,由m≤n(1-lnn),m>0,得出n=1時(shí),m是(0,1]上的任意一個(gè)值.
(3)由n-n(1-
x
n
)nexx2
n-x2≤n(1-
x
n
)2ex
當(dāng)x∈(-∞,-
n
]∪[
n
,n]
時(shí),n-x2≤0,n(1-
x
n
)nex≥0
不等式成立,從而問(wèn)題解決.
解答: 解  (1)設(shè)f(x)=(1+x)n-(1+nx),
則f′(x)=n(1+x)n-1-n,
∴f(x)在(-1,0)遞減,在(0,+∞)上遞增,
故最小值為f(0)=0得證.
(2)設(shè)M(x0,y0),
在M處的切線方程:y=ex0x-x0ex0+ex0
則有:n=ex0m=-x0ex0+ex0
∴m≤n(1-lnn),m>0,n∈N*
故n=1時(shí),m是(0,1]上的任意一個(gè)值.
(3)n-n(1-
x
n
)nexx2
n-x2≤n(1-
x
n
)2ex

當(dāng)x∈(-∞,-
n
]∪[
n
,n]
時(shí),
n-x2≤0,n(1-
x
n
)nex≥0
不等式成立.
當(dāng)x∈(0,
n
)
時(shí) 
 n[(1-
x
n
)•e
x
n
]n≥n[(1-
x
n
)(1+
x
n
)]n
n[(1-
x
n
)•e
x
n
]n≥n(1-
x2
n2
)n≥n(1-
x2
n
)≥n-x2
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,不等式的證明,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在區(qū)間D上的函數(shù),任給x1,x2∈D,且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為區(qū)間D上的嚴(yán)格凸函數(shù).現(xiàn)給出下列命題:
①函數(shù)y=log2x與函數(shù)y=-x2在區(qū)間(0,+∞)上均為嚴(yán)格凸函數(shù);
②函數(shù)y=2x與y=tanx在(-1,1)均不為嚴(yán)格凸函數(shù);
③一定存在實(shí)數(shù)k,使得函數(shù)y=x+
k
x
在區(qū)間(-∞,0)上為嚴(yán)格凸函數(shù).
其中正確的命題個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正數(shù)a,b,c滿足a+b+c=1.
(1)求證:
1
3
≤a2+b2+c2<1;
(2)求
1
2a+1
+
1
2b+1
+
1
2c+1
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市居民2009~2013年貨幣收入x與購(gòu)買(mǎi)商品支出Y的統(tǒng)計(jì)資料如下表所示:
( 單 位:億元)
年份 2009 2010 2011 2012 2013
貨幣收入x 40 42 46 47 50
購(gòu)買(mǎi)商品支出Y 33 34 37 40 41
(Ⅰ)畫(huà)出散點(diǎn)圖,判斷x與Y是否具有相關(guān)關(guān)系;
(Ⅱ)已知
b
=0.84,請(qǐng)寫(xiě)出Y對(duì)x的回歸直線方程y=
b
x+
a
;并估計(jì)貨幣收入為52(億元)時(shí),購(gòu)買(mǎi)商品支出大致為多少億元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-(a-2)x-alnx,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=-x3-ax2+a-
a2
4
,若存在α,β∈(0,a],使得|f(α)-g(β)|<a成立,求a的取值范圍;  
(Ⅲ)若方程f(x)=c有兩個(gè)不相等的實(shí)數(shù)根x1,x2,求證:f′(
x1+x2
2
)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(α-β)=
1
2
,tanβ=-
1
7
,且α,β∈(0,π),求tanα及2α-β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若PA=AB=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|z|2+(z+
.
z
)i=
3-i
2+i
,其中
.
z
是z的共軛復(fù)數(shù),求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=5,an+1=Sn+3n(n∈N*).
(1)令bn=Sn-3n,求證:{bn}是等比數(shù)列;
(2)令cn=
1
log2bn+1•log2bn+2
,設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,求滿足不等式Tn
2011
4026
的n的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案