【題目】在平面直角坐標(biāo)系xOy中,已知平行于軸的動(dòng)直線交拋物線于點(diǎn),點(diǎn)的焦點(diǎn).圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線

⑴求曲線的方程;

⑵若直線與曲線相切于點(diǎn),過(guò)且垂直于的直線為,直線,分別與軸相交于點(diǎn),.當(dāng)線段的長(zhǎng)度最小時(shí),求的值.

【答案】(1) (2)

【解析】試題分析:(1)的方程為 ;(2),所以當(dāng)時(shí),取得極小值也是最小值,即取得最小值,此時(shí)

試題解析:

(1)因?yàn)閽佄锞的方程為,所以的坐標(biāo)為,

設(shè),因?yàn)閳A軸、直線都相切,平行于軸,

所以圓的半徑為,

則直線的方程為,即

所以,又,

所以,即,

所以的方程為

(2)設(shè), ,,

由(1)知,點(diǎn)處的切線的斜率存在,由對(duì)稱性不妨設(shè),

,,

所以,,

,

所以當(dāng)時(shí),取得極小值也是最小值,即取得最小值

此時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題在區(qū)間上是減函數(shù);

命題q:不等式無(wú)解。

若命題“”為真,命題“”為假,求實(shí)數(shù)m 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,點(diǎn)是曲線上的動(dòng)點(diǎn).點(diǎn)滿足 (為極點(diǎn)).設(shè)點(diǎn)的軌跡為曲線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,已知直線的參數(shù)方程是,(為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與直線的普通方程;

(2)設(shè)直線交兩坐標(biāo)軸于,兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩個(gè)非零平面向量則有

①若,

②若,

③若,則存在實(shí)數(shù),使得

④若存在實(shí)數(shù),使得,四個(gè)命題中真命題的序號(hào)為 __________.(填寫所有真命題的序號(hào))

【答案】①③④

【解析】逐一考查所給的結(jié)論:

①若,則,據(jù)此有:,說(shuō)法①正確;

②若,,則,

,說(shuō)法②錯(cuò)誤;

③若,則,據(jù)此有:

由平面向量數(shù)量積的定義有:,

則向量反向,故存在實(shí)數(shù),使得,說(shuō)法③正確;

④若存在實(shí)數(shù),使得,則向量與向量共線,

此時(shí),,

若題中所給的命題正確,則,

該結(jié)論明顯成立.即說(shuō)法④正確;

綜上可得:真命題的序號(hào)為①③④.

點(diǎn)睛:處理兩個(gè)向量的數(shù)量積有三種方法:利用定義;利用向量的坐標(biāo)運(yùn)算;利用數(shù)量積的幾何意義.具體應(yīng)用時(shí)可根據(jù)已知條件的特征來(lái)選擇,同時(shí)要注意數(shù)量積運(yùn)算律的應(yīng)用.

型】填空
結(jié)束】
17

【題目】已知在,,.

(1)求角的大小;

(2)設(shè)數(shù)列滿足,項(xiàng)和為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.

(1)求函數(shù),的解析式;

(2)設(shè)函數(shù),記 .探究是否存在正整數(shù),使得對(duì)任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>,對(duì)任意、都有,當(dāng)時(shí),,.

1)求

2)證明:上單調(diào)遞減;

3)解不等式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:

①若函數(shù)在區(qū)間上單調(diào)遞增,則;

②若),則的取值范圍是;

③若函數(shù),則對(duì)任意的,都有

④若),在區(qū)間上單調(diào)遞減,則.

其中所有正確命題的序號(hào)是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,則下列結(jié)論正確的是 ( )

A. 向左平移個(gè)單位長(zhǎng)度,得到的曲線關(guān)于原點(diǎn)對(duì)稱

B. 向右平移個(gè)單位長(zhǎng)度,得到的曲線關(guān)于軸對(duì)稱

C. 向左平移個(gè)單位長(zhǎng)度,得到的曲線關(guān)于原點(diǎn)對(duì)稱

D. 向右平移個(gè)單位長(zhǎng)度,得到的曲線關(guān)于軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;

2)若,求函數(shù)的單調(diào)遞減區(qū)間;

3)當(dāng)時(shí),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案