函數(shù)y=ax2+bx與y=log|
ba
|
x
(ab≠0,|a|≠|(zhì)b|)在同一直角坐標(biāo)系中的圖象可能是
分析:根據(jù)函數(shù)y=log|
b
a
|
x
(ab≠0,|a|≠|(zhì)b|)的單調(diào)性以及函數(shù)y=ax2+bx圖象的對(duì)稱(chēng)軸到原點(diǎn)的距離分析判斷.
解答:解:(1)若|
b
a
|>1,則y=log|
b
a
|
x
單調(diào)遞增,①,②符合;由①,②中函數(shù)y=ax2+bx的圖象知|
b
2a
|
1
2
,與此時(shí)|
b
2a
|
1
2
不符,所以排除①,②.
(2)若0<|
b
a
|<1,則y=log|
b
a
|
x單調(diào)遞減,③,④符合;由③中y=ax2+bx的圖象知|
b
2a
|>
1
2
,與此時(shí)0<|
b
2a
|
1
2
不符,所以排除③.
故答案為:④.
點(diǎn)評(píng):本題考查了函數(shù)的圖象,考查了利用所學(xué)知識(shí)解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖已知O為坐標(biāo)原點(diǎn),∠AOB=30°,∠ABO=90°,且點(diǎn)A的坐標(biāo)為(2,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)A、B、O 三點(diǎn),求此二次函數(shù)的解析式;                             
(3)在(2)中的二次函數(shù)圖象的OB段(不包括點(diǎn)O、B)上,是否存在一點(diǎn)C,使得四邊形ABCO的面積最大?若存在,求出這個(gè)最大值及此時(shí)點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對(duì)稱(chēng)軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax2+bx+1在(0,+∞]上單調(diào),則y=ax+b的圖象不可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)A(-4,5)、B(-1,4)、C(0,3)三點(diǎn).
(1)試求這個(gè)二次函數(shù)的解析表達(dá)式;
(2)試求出函數(shù)y=|ax2+bx+c|的零點(diǎn),并畫(huà)出其圖象(草圖);
(3)根據(jù)圖象寫(xiě)出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c(x∈R)的部分對(duì)應(yīng)值如下表
x -3 -2 -1 0 1 2 3 4
y 6 0 -4 -6 -6 -4 0 6
(1)不等式ax2+bx+c>0的解集是多少?
(2)不等式cx2+bx+c>0的解集是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案