已知函數(shù)f(x)=
x+1
x-2
,其中x∈[3,5].
(Ⅰ)用定義證明函數(shù)f(x)在[3,5]上單調(diào)遞減;
(Ⅱ)結(jié)合單調(diào)性,求函數(shù)f(x)=
x+1
x-2
在區(qū)間[3,5]上的最大值和最小值.
考點(diǎn):函數(shù)的最值及其幾何意義,函數(shù)單調(diào)性的判斷與證明
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)用定義法證明單調(diào)性一般可以分為五步,取值,作差,化簡(jiǎn)變形,判號(hào),下結(jié)論.
(2)由單調(diào)性求最值.
解答: 解:(Ⅰ)證明:任取x1,x2∈[3,5],且x1<x2,則
f(x1)-f(x2)=
x1+1
x1-2
-
x2+1
x2-2
=
3(x2-x1)
(x1-2)(x2-2)
;
∵x1,x2∈[3,5],且x1<x2,
∴x1-2>0,x2-2>0,x2-x1>0;
故f(x1)-f(x2)>0;
故函數(shù)f(x)在[3,5]上單調(diào)遞減;
(Ⅱ)由(Ⅰ)知,
函數(shù)f(x)=
x+1
x-2
在區(qū)間[3,5]上的最大值為f(3)=
3+1
3-2
=4;
最小值為f(5)=
5+1
5-2
=2.
點(diǎn)評(píng):本題考查了函數(shù)單調(diào)性的證明,一般有兩種方法,定義法,導(dǎo)數(shù)法,同時(shí)考查了函數(shù)的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(
1+x2
-x)+2,則f(lg3)+f(lg
1
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱錐S-ABCD中,SA=2
3
,那么當(dāng)該棱錐的體積最大時(shí),它的底面積為(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={0,1,2},集合B={0,2,4},則A∪B=( 。
A、{0}
B、{2}
C、{0,2,4}
D、{0,1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}各項(xiàng)為正,Sn為其前n項(xiàng)和,滿足2Sn=3an-3,數(shù)列{bn}為等差數(shù)列,且b2=2,b10=10,求數(shù)列{an+bn}的前n項(xiàng)和Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

取正方體的六個(gè)表面的中心,這六個(gè)點(diǎn)所構(gòu)成的幾何體的體積記為V1,該正方體的體積為V2,則V1:V2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線C:y2=2px(p>0)的焦點(diǎn)F(1,0),過(guò)點(diǎn)F任作兩條弦AC,BD,且
AC
BD
=0,E,G分別為AC、BD的中點(diǎn)
(1)寫(xiě)出拋物線C的方程;
(2)設(shè)過(guò)點(diǎn)(3,0)的直線EG交拋物線C于M、N兩點(diǎn),試求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+
3
2
(a,b為實(shí)數(shù)且a>0)
(1)若f(1)=1,且對(duì)任意實(shí)數(shù)x的均有f(x)≥1成立,求f(x)表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),若g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的值;
(3)若函數(shù)f(x)的定義域?yàn)閇m,n],值域?yàn)閇m,n](m<n),則稱函數(shù)f(x)是[m,n]上的“方正”函數(shù),設(shè)f(x)是[1,2]上的“方正”函數(shù),求常數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,4),B(3,-1),C(m,-4),其中m∈R.
(1)當(dāng)m=-3時(shí),求向量
AB
BC
夾角的余弦值;
(2)若A,B,C三點(diǎn)構(gòu)成以A為直角頂點(diǎn)的直角三角形,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案