若實數(shù)x、y滿足不等式組
y≥0
x-y≤4
2x-y-2≥0
,則ω=
y-1
x+1
的取值范圍是
 
分析:本題考查的知識點是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件
y≥0
x-y≤4
2x-y-2≥0
,畫出滿足約束條件的可行域,分析 ω=
y-1
x+1
表示的幾何意義,結(jié)合圖象即可給出 ω=
y-1
x+1
的取值范圍.
解答:解:約束條件
y≥0
x-y≤4
2x-y-2≥0
對應(yīng)的平面區(qū)域如下圖示:
精英家教網(wǎng)
ω=
y-1
x+1
表示可行域內(nèi)的點(x,y)與點(-1,1)連線的斜率,
由圖可知 ω=
y-1
x+1
的取值范圍是 [-
1
2
,2)
,
故答案為:[-
1
2
,2)
點評:平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關(guān)鍵是正確地畫出平面區(qū)域,分析表達式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點的坐標(biāo),即可求出答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實驗中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實驗中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

查看答案和解析>>

同步練習(xí)冊答案