已知函數(shù)(b,c為常數(shù)).
(1)若f(x)在x=1和x=3處取得最值,求b,c的值;
(2)若f(x)在x∈(-∞,x1)、(x2,+∞)上單調(diào)遞增,且在上單調(diào)遞減,又滿足x2-x1>1,求證:b2>2(b+2c);
(3)在(2)的條件下,若t<x1,比較t2+bt+c和x1的大小,并加以證明.
【答案】分析:(1)先求函數(shù)f(x)的導(dǎo)函數(shù),故x=1和x=3是導(dǎo)函數(shù)的零點(diǎn)從而得到答案.
(2)根據(jù)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)增,導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減代入可得答案.
(3)根據(jù)x1,x2是x2+(b-1)x+c=0兩根,所以可得x2+(b-1)x+c=(x-x1)(x-x2),然后整理放縮可得答案.
解答:解:(1)f'(x)=x2+(b-1)x+c,由題意知1、3是方程x2+(b-1)x+c=0兩根,∴
∴b=-3,c=3
(2)由題意知,當(dāng)x∈(-∞,x1)、(x2,+∞)時(shí),f'(x)>0;
當(dāng)x∈(x1,x2)時(shí),f'(x)<0,
∴x1,x2是x2+(b-1)x+c=0兩根,x1+x2=1-b,x1x2=c,
∴b2-2(b+2c)=b2-2b-4c=[1-(x+x)2]-2[1-(x1+x2)]-4x1x2=(x+x)2-1,
∵x1-x2>1,∴(x+x)2-1>0,
∴b2>2(b+2c).
(3)在(2)下,由上題知x2+(b-1)x+c=(x-x1)(x-x2),即x2+bx+c=(x-x1)(x-x2)+x,
∴t2+bt+c-x1=(t-x1)(t-x2)+t-x1=(t-x1)(t+1-x2).
∵x2>1+x1>1+t,
∴1+t-x2<0.
∵0<t<x1,∴t-x1<0,
∴(t-x1)(t+1-x2)<0,
∴t2+bt+c>x1
點(diǎn)評(píng):本題主要考查導(dǎo)函數(shù)的正負(fù)和原函數(shù)的增減性的關(guān)系.屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)必修五數(shù)學(xué)蘇教版 蘇教版 題型:013

已知Sk為數(shù)列{an}的前k項(xiàng)和,且Sk+Sk+1=ak+1(k∈N+).那么此數(shù)列是

[  ]

A.單調(diào)增數(shù)列

B.單調(diào)減函數(shù)

C.常數(shù)列

D.擺動(dòng)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知Sk為數(shù)列{an}的前k項(xiàng)和,且Sk+Sk+1=ak+1(k∈N+).那么此數(shù)列是


  1. A.
    單調(diào)增數(shù)列
  2. B.
    單調(diào)減函數(shù)
  3. C.
    常數(shù)列
  4. D.
    擺動(dòng)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

已知函數(shù)f(x)的定義域?yàn)锳,如果對(duì)于屬于定義域內(nèi)某個(gè)區(qū)間I上的任意兩個(gè)不同的自變量x1,x2,都有,則
[     ]
A.f(x)在這個(gè)區(qū)間上為增函數(shù)
B.f(x)在這個(gè)區(qū)間上為減函數(shù)
C.f(x)在這個(gè)區(qū)間上的增減性不變
D.f(x)在這個(gè)區(qū)間上為常函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案