設(shè)函數(shù)f(x)=lnx-
1
2
ax2-6x

(Ⅰ)當(dāng)a=b=
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)令F(x)=f(x)+
1
2
ax2+bx+
a
x
(0
<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線(xiàn)的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a=0,b=-1時(shí),方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.
分析:(I)先求導(dǎo)數(shù)fˊ(x)然后在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區(qū)間為單調(diào)增區(qū)間,fˊ(x)<0的區(qū)間為單調(diào)減區(qū)間.
(II)先構(gòu)造函數(shù)F(x)再由以其圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線(xiàn)的斜率k≤
1
2
恒成立,知導(dǎo)函數(shù)≤
1
2
恒成立,再轉(zhuǎn)化為所以a≥(-
1
2
,x02+x0)max求解.
(III)先把程f(x)=mx有唯一實(shí)數(shù)解,轉(zhuǎn)化為m=1+
lnx
x
有唯一實(shí)數(shù)解,再利用單調(diào)函數(shù)求解.
解答:解:(Ⅰ)依題意,知f(x)的定義域?yàn)椋?,+∞).(1分)
當(dāng)a=b=
1
2
時(shí),f(x)=lnx-
1
4
x2-
1
2
x,
f′(x)=
1
x
-
1
2
x-
1
2
=
-(x+2)(x-1)
2x
.(2分)
令f′(x)=0,解得x=1.
當(dāng)0<x<1時(shí),f′(x)>,此時(shí)f(x)單調(diào)遞增;
當(dāng)x>1時(shí),f′(x)<0,此時(shí)f(x)單調(diào)遞減.(3分)
所以函數(shù)f(x)的單調(diào)增區(qū)間(0,1),函數(shù)f(x)的單調(diào)減區(qū)間(1,+∞).(4分)
(Ⅱ)F(x)=lnx+
a
x
,x∈(0,3],
所以k=F′(x0)=
x0-a
x
2
0
1
2
,在x0∈(0,3]上恒成立,(6分)
所以a≥(-
1
2
,x02+x0)max,x0∈(0,3](7分)
當(dāng)x0=1時(shí),-
1
2
x02+x0取得最大值
1
2
.所以a≥
1
2
.(9分)
(Ⅲ)當(dāng)a=0,b=-1時(shí),f(x)=lnx+x,
因?yàn)榉匠蘤(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,
所以lnx+x=mx有唯一實(shí)數(shù)解.
m=1+
lnx
x
,
設(shè)g(x)=1+
lnx
x
,則g′(x)=
1-lnx
x2

令g′(x)>0,得0<x<e;
g′(x)<0,得x>e,
∴g(x)在區(qū)間[1,e]上是增函數(shù),在區(qū)間[e,e2]上是減函數(shù),
g(1)=1,g(e2)=1+
lne2
e2
=1+
2
e2
,g(e)=1+
1
e
,
所以m=1+
1
e
,或1≤m<1+
2
e2
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性、極值、不等式、方程的解等基本知識(shí),同時(shí)考查運(yùn)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,分類(lèi)與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0.
(Ⅱ)從編號(hào)1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽到的20個(gè)號(hào)碼互不相同的概率為p,證明:p<(
9
10
)19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x-1)+
2a
x
(a∈R)

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果當(dāng)x>1,且x≠2時(shí),
ln(x-1)
x-2
a
x
恒成立,則求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln(x+1)-
2x
的零點(diǎn)為x0,若x0∈(k,k+1),k為整數(shù),則k的值等于
-1或1
-1或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖北模擬)設(shè)函數(shù)f(x)=ln(x+a)-x2
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在區(qū)間[1,2]上為減函數(shù),求a的取值范圍.
(3)若直線(xiàn)y=x為函數(shù)f(x)的圖象的一條切線(xiàn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln,則函數(shù)f()+f()的定義域?yàn)開(kāi)______.

查看答案和解析>>

同步練習(xí)冊(cè)答案