如圖,正方形所在的平面與正方形所在的平面相互垂直,、分別是的中點.
 
(1)求證:面;
(2)求直線與平面所成的角正弦值.
(1)詳見解析;(2).

試題分析:(1)采用思路:線線垂直推出線面垂直,然后推出面面垂直;(2)利用定義法通過添加輔助線確定直線與平面所成的角,然后通過解三角形求解其值.
試題解析:(1)∵為正方形,∴
為正方形,∴,∴.  3分
,∴.
,∴面.        6分

(Ⅱ)作上的射影,連. 7′
,,∴面,
∴面,∴,
與面所成的角.           9分
上的射影,連.
,則.

,
∴直線與平面所成的角的正弦值為.                   12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(如圖1)在平面四邊形中,中點,,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點,并且ABCD為正方形,設F,G,H分別為PB,EB,PC的中點.

(1)求三棱錐的體積;
(2)在線段PC上是否存在一點M,使直線與直線所成角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點,且MN=PQ.

(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點F,使得.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)如圖,棱錐的底面是矩形,⊥平面,

(1)求證:⊥平面
(2)求二面角的大。
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)如圖,在四棱錐中,底面是矩形,平面,與平面所成角的正切值依次是,依次是的中點.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關系?梢缘贸龅恼_結論是:“設三棱錐A—BCD的三個側面ABC、ACD、ADB兩兩相互垂直,則                                       ”.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三棱柱中,、所成角均為,且,則三棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

單位正方體在一個平面內(nèi)的投影面積的最大值和最小值分別為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線∥平面,直線,則的位置關系是           ( 。
A.B.異面
C.相交D.沒有公共點

查看答案和解析>>

同步練習冊答案