不等式
3x-1
2-x
≥1
的解集是( 。
A、{x|
3
4
≤x≤2}
B、{x|
3
4
≤x<2}
C、{x|x>2或x≤
3
4
}
D、{x|x≥
3
4
}
分析:把原不等式的右邊移項到左邊,通分計算后,然后轉化為兩個一元一次不等式組,求出不等式組的解集即為原不等式的解集.
解答:解:不等式
3x-1
2-x
≥1
,
移項得:
3x-1
2-x
-1≥0
,即
x-
3
4
x-2
≤0,
可化為:
x-
3
4
≥0
x-2<0
x-
3
4
≤0
x-2>0

解得:
3
4
≤x<2,
則原不等式的解集為:
3
4
≤x<2
故選B.
點評:此題考查了其他不等式的解法,考查了轉化及分類討論的數(shù)學思想,是高考中?嫉念}型.學生進行不等式變形,在不等式兩邊同時除以-1時,注意不等號方向要改變.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 
1
2
(ax2+3x+a+1)
(1)當a=-1時,求函數(shù)f(x)的單調區(qū)間及最值;
(2)對于x∈[1,2],不等式(
1
2
f(x)-3x≥2恒成立,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
3x-1
2-x
≥1
的解集為
{x|
3
4
≤x<2
}
{x|
3
4
≤x<2
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•嘉定區(qū)三模)已知函數(shù)f(x)=x+
a
x
+b(x≠0),其中a、b為實常數(shù).
(1)若方程f(x)=3x+1有且僅有一個實數(shù)解x=2,求a、b的值;
(2)設a>0,x∈(0,+∞),寫出f(x)的單調區(qū)間,并對單調遞增區(qū)間用函數(shù)單調性定義進行證明;
(3)若對任意的a∈[
1
2
,2],不等式f(x)≤10在x∈[
1
4
,1]上恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

不等式
3x-1
2-x
≥1
的解集是(  )
A.{x|
3
4
≤x≤2}
B.{x|
3
4
≤x<2}
C.{x|x>2或x≤
3
4
}
D.{x|x≥
3
4
}

查看答案和解析>>

同步練習冊答案