3.已知函數(shù)f(x)=sin(2x+φ)($0<ϕ<\frac{π}{2}$),且$f(0)=\frac{1}{2}$.
(Ⅰ)求函數(shù)y=f(x)的最小正周期T及φ的值;
(Ⅱ)當x∈[0,$\frac{π}{2}$]時,求函數(shù)y=f(x)的最小值.

分析 (Ⅰ)根據(jù)最小正周期的定義即可求出,再根據(jù)$f(0)=\frac{1}{2}$,即可求出φ=$\frac{π}{6}$,
(Ⅱ)根據(jù)正弦函數(shù)的性質即可求出.

解答 解:(Ⅰ)$T=\frac{2π}{2}=π$,
∵f(0)=sinφ=$\frac{1}{2}$,$0<ϕ<\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
(Ⅱ)由(1)可得f(x)=sin(2x+$\frac{π}{6}$),
∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴函數(shù)y=f(x)的最小值為-$\frac{1}{2}$

點評 本題考查了三角函數(shù)的圖象和性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知點A(7,1),B(1,a),若直線y=x與線段AB交于點C,且$\overrightarrow{AC}=2\overrightarrow{CB}$,則實數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設向量$\overrightarrow{a}$,$\overrightarrow$的模分別為2和3,且夾角為60°,則|$\overrightarrow{a}$+$\overrightarrow$|等于( 。
A.$\sqrt{13}$B.13C.$\sqrt{19}$D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=a|sinx|+2(a>0)的單調遞增區(qū)間是(  )
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.(-π,-$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=2tan(ωx+ϕ)$({ω>0,|ϕ|<\frac{π}{2}})$的最小正周期為$\frac{π}{2}$,且$f({\frac{π}{2}})=-2$,則ω=2,ϕ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.“若x≠1,則x2-1≠0”的逆否命題為假命題.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.直線x+2y-5+$\sqrt{15}$=0被圓x2+y2-2x-4y=0截得的弦長為( 。
A.1B.2$\sqrt{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點分別為(-1,0),(1,0),且經過點(1,$\frac{3}{2}$).
(1)求橢圓的標準方程;
(2)設經過點(1,0)且不垂直于x軸的直線l與橢圓交于不同的兩點P,Q.求證:在x軸上存在定點N,使得直線NP,NQ的傾斜角互補.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,已知⊙O的半徑為5mm,弦AB=8mm,則圓心O到AB的距離是(  )
A.1mmB.2mmmC.3mmD.4mm

查看答案和解析>>

同步練習冊答案