【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種.若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:
(Ⅰ)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(Ⅱ)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元:
①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.
【答案】解:(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a. 由統(tǒng)計(jì)數(shù)據(jù)可知:
P(X=0.9a)= ,P(X=0.8a)= ,P(X=0.7a)= ,P(X=a)= ,P(X=1.1a)= ,
P(X=1.3a)= .
所以X的分布列為:
X | 0.9a | 0.8a | 0.7a | a | 1.1a | 1.3a |
P |
所以EX=0.9a× +0.8a× +0.7a× +a× +1.1a× +1.3a× = = ≈942.
(Ⅱ) ①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車(chē)齡已滿(mǎn)三年的二手車(chē)為事故車(chē)的概率為 ,三輛車(chē)中至多有一輛事故車(chē)的概率為P= + = .
②設(shè)Y為該銷(xiāo)售商購(gòu)進(jìn)并銷(xiāo)售一輛二手車(chē)的利潤(rùn),Y的可能取值為﹣5000,10000.
所以Y的分布列為:
Y | ﹣5000 | 10000 |
P |
所以EY=﹣5000× +10000× =5000.
所以該銷(xiāo)售商一次購(gòu)進(jìn)100輛該品牌車(chē)齡已滿(mǎn)三年的二手車(chē)獲得利潤(rùn)的期望值為100EY=50萬(wàn)元
【解析】(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a.由統(tǒng)計(jì)數(shù)據(jù)可知其概率及其分布列.(II)①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車(chē)齡已滿(mǎn)三年的二手車(chē)為事故車(chē)的概率為 ,三輛車(chē)中至多有一輛事故車(chē)的概率為P= + . ②設(shè)Y為該銷(xiāo)售商購(gòu)進(jìn)并銷(xiāo)售一輛二手車(chē)的利潤(rùn),Y的可能取值為﹣5000,10000.即可得出分布列與數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為F,設(shè)直線(xiàn)l:x=5與x軸的交點(diǎn)為E,過(guò)點(diǎn)F且斜率為k的直線(xiàn)l1與橢圓交于A(yíng),B兩點(diǎn),M為線(xiàn)段EF的中點(diǎn).
(I)若直線(xiàn)l1的傾斜角為 ,求△ABM的面積S的值;
(Ⅱ)過(guò)點(diǎn)B作直線(xiàn)BN⊥l于點(diǎn)N,證明:A,M,N三點(diǎn)共線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,平面,,,.
(1)求證:;
(2)當(dāng)幾何體的體積等于時(shí),求四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長(zhǎng)為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點(diǎn)F在平面ABED內(nèi)的正投影為G,且G在A(yíng)E上,點(diǎn)M是在線(xiàn)段CF上,且CM= CF.
(Ⅰ)證明:直線(xiàn)GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為 (a>0,β為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程ρcos(θ﹣ )= .
(Ⅰ)若曲線(xiàn)C與l只有一個(gè)公共點(diǎn),求a的值;
(Ⅱ)A,B為曲線(xiàn)C上的兩點(diǎn),且∠AOB= ,求△OAB的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,若橢圓與圓:相交于M,N兩點(diǎn),且圓E在橢圓內(nèi)的弧長(zhǎng)為.
(1)求橢圓的方程;
(2)過(guò)橢圓的上焦點(diǎn)作兩條相互垂直的直線(xiàn),分別交橢圓于A(yíng),B、C,D,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某河流在一段時(shí)間x min內(nèi)流過(guò)的水量為y m3,y是x的函數(shù),y=f(x)=.
(1)當(dāng)x從1變到8時(shí),y關(guān)于x的平均變化率是多少?它代表什么實(shí)際意義?
(2)求f′(27)并解釋它的實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的一個(gè)焦點(diǎn)與拋物線(xiàn) 的焦點(diǎn)相同,F(xiàn)1 , F2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為4 .
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點(diǎn)N(x0 , y0),從原點(diǎn)O向圓N:(x﹣x0)2+(y﹣y0)2=3作兩條切線(xiàn),分別交橢圓于A(yíng),B兩點(diǎn).試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com