假設(shè)某種動(dòng)物在某天(從00:00到24:00)中的活躍程度可用“活躍指數(shù)”y表示,y與這一天某一時(shí)刻t(0≤t≤24,單位:小時(shí))的關(guān)系可用函數(shù)y=
13
(t-12)3-3(t-12)2
+c來(lái)擬合,如果該動(dòng)物在15:00時(shí)的活躍指數(shù)為42,則該動(dòng)物在9:00時(shí)的活躍指數(shù)大約為
24
24
分析:先根據(jù)該動(dòng)物在15:00時(shí)的活躍指數(shù)為42,求出c的值,然后將t=9代入y=
1
3
(t-12)3-3(t-12)2
+c,可求出該動(dòng)物在9:00時(shí)的活躍指數(shù).
解答:解:∵y=
1
3
(t-12)3-3(t-12)2
+c,該動(dòng)物在15:00時(shí)的活躍指數(shù)為42,
∴當(dāng)t=15時(shí),y=42,即
1
3
(15-12)3-3(15-12)2
+c=42,
解得c=60,
∴y=
1
3
(t-12)3-3(t-12)2
+60,
當(dāng)t=9時(shí),y=
1
3
(9-12)3-3(9-12)2
+60=24,
∴該動(dòng)物在9:00時(shí)的活躍指數(shù)大約為24.
故答案為:24.
點(diǎn)評(píng):本題主要考查了函數(shù)模型的選擇與應(yīng)用,以及閱讀理解的能力和分析問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案