如圖所示,已知A,B分別為橢圓+=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn),直線l∥AB,l與x軸、y軸分別交于C,D兩點(diǎn),直線CE,DF為橢圓的切線,則CE與DF的斜率之積kCE·kDF等于( )
(A)± (B)±
(C)± (D)±
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)雙曲線C的中心為點(diǎn)O,若有且只有一對(duì)相交于點(diǎn)O,所成的角為60°的直線A1B1和A2B2,使=,其中A1,B1和A2,B2分別是這對(duì)直線與雙曲線C的交點(diǎn),則該雙曲線的離心率的取值范圍是( )
(A) (B)
(C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知F1(-1,0),F2(1,0)是橢圓C的兩個(gè)焦點(diǎn),過(guò)F2且垂直于x軸的直線交C于A、B兩點(diǎn),且=3,則C的方程為( )
(A)+y2=1 (B)+=1
(C)+ =1 (D)+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)橢圓C: +=1(a>b>0)過(guò)點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知F是橢圓C: +=1(a>b>0)的右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF與圓(x-)2+y2=相切于點(diǎn)Q,且=2,則橢圓C的離心率等于( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,F1,F2是橢圓C1: +y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)橢圓C1: +=1(a>b>0),拋物線C2:x2+by=b2.
(1)若C2經(jīng)過(guò)C1的兩個(gè)焦點(diǎn),求C1的離心率;
(2)設(shè)A(0,b),Q(3,b),又M,N為C1與C2不在y軸上的兩個(gè)交點(diǎn),若△AMN的垂心為B(0,b),且△QMN的重心在C2上,求橢圓C1和拋物線C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C的左、右焦點(diǎn)坐標(biāo)分別是(-,0),( ,0),離心率是.直線y=t與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓P,圓心為P.
(1)求橢圓C的方程;
(2)若圓P與x軸相切,求圓心P的坐標(biāo);
(3)設(shè)Q(x,y)是圓P上的動(dòng)點(diǎn),當(dāng)t變化時(shí),求y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一組數(shù)據(jù)如莖葉圖所示.若從中剔除2個(gè)數(shù)據(jù),使得新數(shù)據(jù)組的平均數(shù)不變且方差最小,則剔除的2個(gè)數(shù)據(jù)的積等于________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com