(2012•淄博二模)設(shè)等比數(shù)列{an}的公比為q,前n項和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,則公比q為(  )
分析:首先由Sn+1,Sn,Sn+2成等差數(shù)列,可得2Sn=Sn+1+Sn+2,然后利用等比數(shù)列的求和公式分別表示Sn+1,Sn,Sn+2,注意分q=1和q≠1兩種情況討論,解方程即可.
解答:解:設(shè)等比數(shù)列{an}的公比為q,前n項和為Sn,且Sn+1,Sn,Sn+2成等差數(shù)列,則2Sn=Sn+1+Sn+2
若q=1,則Sn=na1,式顯然不成立.
若q≠1,則
2a1(1-qn)
1-q
=
a1(1-qn+1)
1-q
+
a1(1-qn+2)
1-q

故2qn=qn+1+qn+2,即q2+q-2=0,因此q=-2.
故選:D.
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì),等比數(shù)列的前n項和公式,涉及等比數(shù)列求和時,若公比為字母,則需要分類討論,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博二模)已知cos(
π
4
-x)=
3
5
,則sin2x的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博二模)執(zhí)行如圖所示的程序框圖,輸出的M的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博二模)設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x)=f(x+4),且當(dāng)x∈[0,2]時,f(x)=2x-1,則方程f(x)-log2(x+2)=0的實數(shù)根的個數(shù)為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博二模)△ABC中,∠C=90°,且CA=CB=3,點(diǎn)M滿足
BM
=2
AM
,則
CM
CA
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博二模)已知x,y∈R+,且x+y=1,則
1
x
+
4
y
的最小值為
(  )

查看答案和解析>>

同步練習(xí)冊答案